Implantable sandwich PHBHHx film for burst-free controlled delivery of thymopentin peptide.

Acta Pharm Sin B

Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.

Published: May 2018

Sustained release and non-parental formulations of peptides and protein drugs are highly desirable because of enhanced therapeutic effects as well as improved patient compliance. This is especially true for small peptides such as thymopentin (TP5). To this end, implantable sandwich poly (hydroxybutyrate--hydroxyhexanoate) (PHBHHx) films were designed to prolong release time and to inhibit burst release phenomenon of TP5 by a simple volatilization method. release studies revealed that sandwich films had nearly no burst release. release time of sandwich films was prolonged to 42 days. Pharmacodynamic evaluation demonstrated that TP5 sandwich films significantly increased survival rates in a rat immunosuppressive model and normalized CD4/CD8 values. These results suggest that TP5 released from sandwich films can attenuate cyclophosphamide's immunosuppressive activity, and possibly achieve results comparable to daily TP5 injection therapy. Thus, sandwich PHBHHx films show excellent potential as a sustained, burst-free release system for small molecular weight, hydrophilic peptide drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5990338PMC
http://dx.doi.org/10.1016/j.apsb.2018.03.003DOI Listing

Publication Analysis

Top Keywords

sandwich films
16
implantable sandwich
8
sandwich phbhhx
8
phbhhx films
8
release time
8
burst release
8
release
7
sandwich
6
films
6
tp5
5

Similar Publications

Hydrogen-substituted graphdiyne (HsGDY) is a two-dimensional material with an sp-sp carbon skeleton featuring a band gap and a porous structure that enhances ion diffusion. In previous reports, HsGDY growth was limited to metal substrates such as Cu, which then required transfer. Here, we developed a sandwich method that allows HsGDY to be grown directly on the target substrate.

View Article and Find Full Text PDF

Artificial Cephalopod Skins with Switchable Appearance Color.

Macromol Rapid Commun

January 2025

Department of Biological and Bioenergy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.

Cephalopods such as squids, octopuses, and cuttlefishes can change their bodies' color to match the surrounding environments by contracting or expanding the sac just below the surface of the skin. Inspired by this mechanism, artificial cephalopod chromatophores which are prepared by thermoresponsive poly(N-isopropyl acrylamide)-based hydrogel films embedded with black, red, and yellow pigments are presented, they can swell and shrink under temperature stimuli, like the natural chromatophores. The artificial chromatophores embedded with cuttlefish ink are further used to fabricate artificial J.

View Article and Find Full Text PDF

Stretchable electromagnetic interference (EMI) shields with strain-insensitive EMI shielding and Joule heating performances are highly desirable to be integrated with wearable electronics. To explore the possibility of applying geometric design in elastomeric liquid metal (LM) composites and fully investigate the influence of LM geometry on stretchable EMI shielding and Joule heating, multifunctional wrinkle-structured LM/Ecoflex sandwich films with excellent stretchability are developed. The denser LM wrinkle enables not only better electrical conduction, higher shielding effectiveness (SE) and steady-state temperature, but also enhanced strain-stable far-field/near-field shielding performance and Joule-heating capability.

View Article and Find Full Text PDF

Multilayer Graphene Stacked with Silver Nanowire Networks for Transparent Conductor.

Materials (Basel)

January 2025

Department of Physics, Changwon National University, Changwon 51140, Republic of Korea.

A mechanically robust flexible transparent conductor with high thermal and chemical stability was fabricated from welded silver nanowire networks (w-Ag-NWs) sandwiched between multilayer graphene (MLG) and polyimide (PI) films. By modifying the gas flow dynamics and surface chemistry of the Cu surface during graphene growth, a highly crystalline and uniform MLG film was obtained on the Cu foil, which was then directly coated on the Ag-NW networks to serve as a barrier material. It was found that the highly crystalline layers in the MLG film compensate for structural defects, thus forming a perfect barrier film to shield Ag NWs from oxidation and sulfurization.

View Article and Find Full Text PDF

Non-volatile electronic memory elements are very attractive for applications, not only for information storage but also in logic circuits, sensing devices and neuromorphic computing. Here, a ferroelectric film of guanine nucleobase is used in a resistive memory junction sandwiched between two different ferromagnetic films of Co and CoCr alloys. The magnetic films have an in-plane easy axis of magnetization and different coercive fields whereas the guanine film ensures a very long spin transport length, at 100 K.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!