Risk-Informed Mean Recurrence Intervals for Updated Wind Maps in ASCE 7-16.

J Struct Eng (N Y N Y)

Professor, Walter Scott, Jr. College of Engineering, Civil and Environmental Engineering, Colorado State Univ., Fort Collins, CO 80523-1301.

Published: May 2018

ASCE 7 is moving toward adopting load requirements that are consistent with risk-informed design goals characteristic of performance-based engineering (PBE). ASCE 7-10 provided wind maps that correspond to return periods of 300, 700, and 1,700 years for Risk Categories I, II, and combined III/IV, respectively. The risk targets for Risk Categories III and IV buildings and other structures (designated as essential facilities) are different in PBE. The reliability analyses reported in this paper were conducted using updated wind load data to (1) confirm that the return periods already in ASCE 7-10 were also appropriate for risk-informed PBE, and (2) to determine a new risk-based return period for Risk Category IV. The use of data for wind directionality factor, , which has become available from recent wind tunnel tests, revealed that reliabilities associated with wind load combinations for Risk Category II structures are, in fact, consistent with the reliabilities associated with the ASCE 7 gravity load combinations. This paper shows that the new wind maps in ASCE 7-16, which are based on return periods of 300, 700, 1,700, and 3,000 years for Risk Categories I, II, III, and IV, respectively), achieve the reliability targets in Section 1.3.1.3 of ASCE 7-16 for nonhurricane wind loads.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5988364PMC
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0002011DOI Listing

Publication Analysis

Top Keywords

wind maps
12
asce 7-16
12
return periods
12
risk categories
12
wind
8
updated wind
8
maps asce
8
asce 7-10
8
periods 300
8
300 700
8

Similar Publications

Foot-and-Mouth Disease is a highly contagious transboundary animal disease. FMD has caused a significant economic impact globally due to direct losses and trade restrictions on animals and animal products. This study utilized multi-distance spatial cluster analysis, kernel density analysis, directional distribution analysis to investigate the spatial distribution patterns of historical FMD epidemics.

View Article and Find Full Text PDF

Climate change and human activities affect the biomass of different algal and the succession of dominant species. In the past, phytoplankton phyla inversion has been focused on oceanic and continental shelf waters, while phytoplankton phyla inversion in inland lakes and reservoirs is still in the initial and exploratory stage, and the research results are relatively few. Especially for mid-to-high latitude lakes, the research is even more blank.

View Article and Find Full Text PDF

Assessment and application of tropical cyclone clustering in the South China Sea.

Sci Rep

January 2025

College of Ocean and Meteorology & South China Sea Institute of Marine Meteorology, Guangdong Ocean University, 524088, Zhanjiang, Guangdong, China.

Accurate classification of tropical cyclone (TC) tracks is essential for evaluating and mitigating the potential disaster risks associated with TCs. In this study, three commonly used methods (K-means, Fuzzy C-Means, and Self-Organizing Maps) are assessed for clustering historical TC tracks that originated in the South China Sea from 1949 to 2023. The results show that the K-means method performs the best, while the Fuzzy C-Means and Self-Organizing Maps methods are also viable alternatives.

View Article and Find Full Text PDF

Nanoscale Fourier transform infrared (Nano-FTIR) imaging and spectroscopy correlated with photoluminescence measurements of lunar Apollo samples with different surface radiation exposure histories reveal distinct physical and chemical differences associated with space weathering effects. Analysis of two sample fragments: an ilmenite basalt (12016) and an impact melt breccia (15445) show evidence of intrinsic or delivered Nd and an amorphous silica glass component on exterior surfaces, whereas intrinsic Cr and/or trapped electron states are limited to interior surfaces. Spatially localized 1050 cm/935 cm band ratios in Nano-FTIR hyperspectral maps may further reflect impact-induced shock nanostructures, while shifts in silicate band positions indicate accumulated radiation damage at the nanoscale from prolonged space weathering due to micrometeorites, solar wind, energetic x-rays and cosmic ray bombardment.

View Article and Find Full Text PDF

Potential feeding sites for seabirds and marine mammals reveal large overlap with offshore wind energy development worldwide.

J Environ Manage

January 2025

Department of Applied Biology, Miguel Hernández University of Elche, Elche, Spain; Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Orihuela, Spain.

Offshore wind energy is experiencing accelerated growth worldwide to support global net zero ambitions. To ensure responsible development and to protect the natural environment, it is essential to understand and mitigate the potential impacts on wildlife, particularly on seabirds and marine mammals. However, fully understanding the effects of offshore wind energy production requires characterising its global geographic occurrence and its potential overlap with marine species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!