p63 and c-Myc are key transcription factors controlling genes involved in the cell cycle and cellular senescence. We previously reported that p63α can destabilize MM1 protein to derepress c-Myc, resulting in cell cycle progress and tumorigenesis. However, how the proteasomal degradation of MM1 is facilitated remains unclear. In the present study, we identified a novel E3 ligase, HERC3, which can mediate ubiquitination of MM1 and promote its proteasome-dependent degradation. We found that ΔNp63α transcriptionally up-regulates HERC3 and knockdown of HERC3 abrogates ΔNp63α-induced down-regulation of MM1. Either overexpression of MM1 or ablation of HERC3 induces cell senescence, while knockdown of MM1 rescues cell senescence induced by deficiency of either ΔNp63α or HERC3, implicating the involvement of the ΔNp63α/HERC3/MM1/c-Myc axis in the modulation of cell senescence. Additionally, our Oncomine analysis indicates activation of the ΔNp63α/HERC3/MM1/c-Myc axis in invasive breast carcinoma. Together, our data illuminate a novel axis regulating cell senescence: ΔNp63α stimulates transcription of E3 ligase HERC3, which mediates ubiquitination of c-Myc modulator MM1 and targets it to proteasomal degradation; subsequently, c-Myc is derepressed by ΔNp63α, thereby cell senescence is modulated by this axis. Our work provides a new interpretation of crosstalk between p63 and c-Myc, and also sheds new light on ΔNp63α-controlled cell senescence and tumorigenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6261956 | PMC |
http://dx.doi.org/10.1038/s41418-018-0132-5 | DOI Listing |
Background: Plant senescence is a genetically controlled process that results in the programmed death of plant cells, organs, or the entire plant. This process is essential for nutrient recycling and supports the production of plant offspring. Environmental stresses such as drought and heat can hasten senescence, reducing photosynthetic efficiency and significantly affecting crop quality and yield.
View Article and Find Full Text PDFLupus
January 2025
Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
Background: Systemic lupus erythematosus is a common autoimmune disease. Studies have suggested that defective stem cells could be involved in the pathogenesis of systemic lupus erythematosus, which leads to changes in the function of immune cells. By observing the cell morphology, autophagy, and senescence of bone marrow mesenchymal stem cells (BMSCs) from lupus mice and normal controls, this study investigated the role of IL-6 in autophagy and senescence of BMSCs and explored relevant mechanisms.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
Introduction: Glaucoma, a leading cause of irreversible blindness, is characterized by optic neuropathy and retinopathy, with primary open-angle glaucoma (POAG) being the most prevalent form. The primary pathogenic mechanism of POAG involves elevated intraocular pressure caused by chronic fibrosis of the trabecular meshwork (TM). Autophagy, a critical process for maintaining cellular homeostasis, has been implicated in fibrosis across various organs.
View Article and Find Full Text PDFInt J Breast Cancer
January 2025
Department of Hematology and Oncology, Houston Methodist Dr Mary and Ron Neal Cancer Center, Houston, Texas, USA.
This study evaluates the effects of hydroxytyrosol (HT), a component of olive oil, on mammographic breast density reduction. We explored effects of HT on Wnt -catenin and other pathways involved in cancer stem cell renewal, DNA repair, cell proliferation, and differentiation. Twenty-five milligrams per day oral dose of HT was given for 12 months in pre- and postmenopausal women at increased risk of breast cancer.
View Article and Find Full Text PDFNat Immunol
January 2025
Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China.
A comprehensive understanding of the evolution of the immune landscape in humans across the entire lifespan at single-cell transcriptional and protein levels, during development, maturation and senescence is currently lacking. We recruited a total of 220 healthy volunteers from the Shanghai Pudong Cohort (NCT05206643), spanning 13 age groups from 0 to over 90 years, and profiled their peripheral immune cells through single-cell RNA-sequencing coupled with single T cell and B cell receptor sequencing, high-throughput mass cytometry, bulk RNA-sequencing and flow cytometry validation experiments. We revealed that T cells were the most strongly affected by age and experienced the most intensive rewiring in cell-cell interactions during specific age.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!