AI Article Synopsis

  • Genomic characterization is changing how we classify cancers, but it's tough to link genetic changes to actual disease traits.
  • Researchers used a method called SILAC to study proteins in medulloblastoma tissues, finding a wide range of protein levels that correlate with genomic subgroups, while also discovering specific protein variants for each subgroup.
  • By combining proteomic data with genomic information, the study reveals a weak relationship between mRNA and protein levels, but allows identification of genetic changes that affect protein abundance and highlights potential new treatment pathways like the EIF4F cap-dependent translation pathway.
  • This research demonstrates that understanding proteins can enhance insights gained from genomics, paving the way for new cancer therapies.

Article Abstract

Genomic characterization has begun to redefine diagnostic classifications of cancers. However, it remains a challenge to infer disease phenotypes from genomic alterations alone. To help realize the promise of genomics, we have performed a quantitative proteomics investigation using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and 41 tissue samples spanning the 4 genomically based subgroups of medulloblastoma and control cerebellum. We have identified and quantitated thousands of proteins across these groups and find that we are able to recapitulate the genomic subgroups based upon subgroup restricted and differentially abundant proteins while also identifying subgroup specific protein isoforms. Integrating our proteomic measurements with genomic data, we calculate a poor correlation between mRNA and protein abundance. Using EPIC 850 k methylation array data on the same tissues, we also investigate the influence of copy number alterations and DNA methylation on the proteome in an attempt to characterize the impact of these genetic features on the proteome. Reciprocally, we are able to use the proteome to identify which genomic alterations result in altered protein abundance and thus are most likely to impact biology. Finally, we are able to assemble protein-based pathways yielding potential avenues for clinical intervention. From these, we validate the EIF4F cap-dependent translation pathway as a novel druggable pathway in medulloblastoma. Thus, quantitative proteomics complements genomic platforms to yield a more complete understanding of functional tumor biology and identify novel therapeutic targets for medulloblastoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5992829PMC
http://dx.doi.org/10.1186/s40478-018-0548-7DOI Listing

Publication Analysis

Top Keywords

genomic alterations
8
quantitative proteomics
8
protein abundance
8
genomic
6
proteomic analysis
4
medulloblastoma
4
analysis medulloblastoma
4
medulloblastoma reveals
4
reveals functional
4
functional biology
4

Similar Publications

Genetic architecture of Multiple Myeloma and its prognostic implications - An updated review.

Malays J Pathol

December 2024

Universiti Sains Malaysia, School of Medical Sciences, Human Genome Centre, Health Campus, Kelantan, Malaysia.

Multiple myeloma (MM), a clonal B-cell neoplasia, is an incurable and heterogeneous disease where survival ranges from a few months to more than 10 years. The clinical heterogeneity of MM arises from multiple genomic events that result in tumour development and progression. Recurring genomic abnormalities including cytogenetic abnormalities, gene mutations and abnormal gene expression profiles in myeloma cells have a strong prognostic power.

View Article and Find Full Text PDF

Super-enhancer Activates Master Transcription Factor NR3C1 Expression and Promotes 5-FU Resistance in Gastric Cancer.

Adv Sci (Weinh)

December 2024

Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.

Poor response to 5-fluorouracil (5-FU) remains an obstacle in the treatment of gastric cancer (GC). Super enhancers (SEs) are crucial for determining tumor cell survival under drug pressure. SE landscapes related to 5-FU-resistance are mapped to GC using chromatin immunoprecipitation-sequencing (ChIP-Seq).

View Article and Find Full Text PDF

Background: Canine adipose-derived mesenchymal stem cells (cAD-MSCs) demonstrate promising tissue repair and regeneration capabilities. However, the procurement and preservation of these cells or their secreted factors for therapeutic applications pose a risk of viral contamination, and the consequences for cAD-MSCs remain unexplored. Consequently, this research sought to assess the impact of canid alphaherpesvirus 1 (CHV) on the functional attributes of cAD-MSCs, including gene expression profiles and secretome composition.

View Article and Find Full Text PDF

Background: Studies have reported clinical heterogeneity between right-sided colon cancer (RCC) and left-sided colon cancer (LCC). However, none of these studies used multi-omics analysis combining genetic regulation, microbiota, and metabolites to explain the site-specific difference.

Methods: Here, 494 participants from a 16S rRNA gene sequencing cohort (50 RCC, 114 LCC, and 100 healthy controls) and a multi-omics cohort (63 RCC, 79 LCC, and 88 healthy controls) were analyzed.

View Article and Find Full Text PDF

Human brain aging is associated with dysregulation of cell type epigenetic identity.

Geroscience

December 2024

Department of Ecology, Evolution, and Marine Biology, Department of Molecular, Cellular, and Cell Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.

Significant links between aging and DNA methylation are emerging from recent studies. On the one hand, DNA methylation undergoes changes with age, a process termed as epigenetic drift. On the other hand, DNA methylation serves as a readily accessible and accurate biomarker for aging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!