Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Organic field-effect transistors (OFETs) are the most fundamental device units in organic electronics. Interface engineering at the semiconductor/dielectric interface is an effective approach for improving device performance, particularly for enhancing charge transport in conducting channels. Here, we report flat-lying molecular monolayers that exhibit good uniformity and high crystallinity at the semiconductor/dielectric interface, deposited through slow thermal evaporation. Transistor devices achieve high carrier mobility up to 2.80 cm V s, which represents a remarkably improvement in device performance compared with devices that are completely based on fast-evaporated films. Interfacial flat-lying monolayers benefit charge transport by suppressing the polarization of dipoles and narrowing the broadening of trap density of states. Our work provides a promising strategy for enhancing the performance of OFETs by using interfacial flat-lying molecular monolayers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b07095 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!