Objective: Pigs share many physiological, anatomical and genomic similarities with humans, which make them suitable models for biomedical researches. Understanding the genetic status of Yucatan miniature pigs (YMPs) and their association with human diseases will help to assess their potential as biomedical model animals. This study was performed to identify non-synonymous single nucleotide polymorphisms (nsSNPs) in selective sweep regions of the genome of YMPs and present the genetic nsSNP distributions that are potentially associated with disease occurrence in humans.
Methods: nsSNPs in whole genome resequencing data from 12 YMPs were identified and annotated to predict their possible effects on protein function. Sorting intolerant from tolerant (SIFT) and polymorphism phenotyping v2 analyses were used, and gene ontology (GO) network and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses were performed.
Results: The results showed that 8,462 genes, encompassing 72,067 nsSNPs were identified, and 118 nsSNPs in 46 genes were predicted as deleterious. GO network analysis classified 13 genes into 5 GO terms (p<0.05) that were associated with kidney development and metabolic processes. Seven genes encompassing nsSNPs were classified into the term associated with Alzheimer's disease by referencing the genetic association database. The KEGG pathway analysis identified only one significantly enriched pathway (p<0.05), hsa04080: Neuroactive ligand-receptor interaction, among the transcripts.
Conclusion: The number of deleterious nsSNPs in YMPs was identified and then these variants-containing genes in YMPs data were adopted as the putative human diseases-related genes. The results revealed that many genes encompassing nsSNPs in YMPs were related to the various human genes which are potentially associated with kidney development and metabolic processes as well as human disease occurrence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325393 | PMC |
http://dx.doi.org/10.5713/ajas.18.0170 | DOI Listing |
Anat Rec (Hoboken)
December 2024
Department of Orthodontics, University of Washington, Seattle, Washington, USA.
Food Res Int
November 2024
STLO, L'Institut Agro, INRAE, 35042 Rennes, France. Electronic address:
J Biomech
December 2024
Center for Biomedical Engineering and School of Engineering, Brown University, Providence, RI 02912, USA; Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903, USA. Electronic address:
PLoS One
September 2024
Department of Veterinary Clinical Science, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America.
Spinal cord (SC) reconstruction (process to reestablish the severed neural continuity at the injury site) may provide better recovery from blunt SC injury (SCI). A miniature swine model of blunt SC compression was used to test the hypothesis that reconstruction of the SC with sural nerve in combination with surgical decompression and stabilization improves functional, macro- and microstructural recovery compared to decompression and stabilization alone. Following blunt T9-T11 SC compression injury, five adult Yucatan gilts randomly received laminectomy and polyethylene glycol (as fusogen) with (n = 3) or without (n = 2) sural nerve graft SC reconstruction.
View Article and Find Full Text PDFJ Nutr
November 2024
Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada. Electronic address:
Background: Early nutritional challenges can lead to permanent metabolic changes, increasing risk of developing chronic diseases later in life. Total parenteral nutrition (TPN) is a life-saving nutrition regimen, used especially in intrauterine growth-restricted (IUGR) neonates. Early TPN feeding alters metabolism, but whether these alterations are permanent is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!