Background/aims: Oxidative stress is one of the leading factors contributing to increased mortality in patients with chronic kidney disease (CKD) and secondary hyperparathyroidism (sHPT). Cinacalcet is now commonly used in the treatment of sHPT in patients with CKD. The aim of this study was to assess the influence of treatment with cinacalcet on the oxidative stress markers in patients on hemodialysis with sHPT.
Methods: In 58 hemodialysed patients with sHPT (parathyroid hormone [PTH] > 300 pg/mL) plasma Advanced Oxidation Protein Products (AOPP), serum total antioxidant capacity - ImAnOx (TAS/TAC), serum PTH, calcium and phosphate concentrations were assessed before the first dose of cinacalcet and after 6 months of treatment.
Results: Serum PTH concentration decreased significantly from 895 (748-1,070) to 384 (289-510) pg/mL after 6 months of treatment; p < 0.0001. Mean serum concentrations of -calcium and phosphate remained stable. Plasma AOPP concentration decreased significantly from 152 (126-185) to 49 -(43-57) µmol/L after 6 months of treatment; p < 0.0001. ImAnOx significantly increased from 260 (251-270) to 272 (264-280) µmol/L; p = 0.04. After 6 months of treatment, a significant, positive correlation was found between ImAnOx and the daily dose of cinacalcet (r = 0.30; p = 0.02). Also, the change of serum ImAnOx during treatment with cinacalcet significantly correlated with the daily dose of cinacalcet r = 0.35; p = 0.01. No significant correlations were found between plasma AOPP concentration or ImAnOx and PTH, or their changes in time.
Conclusions: (1) Six-month treatment based on cinacalcet seems to reduce oxidative stress markers in maintenance hemodialysis patients with sHPT. (2) This benefit may be related rather to the direct action of cinacalcet than to the serum PTH concentration decrease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000489278 | DOI Listing |
J Biochem Mol Toxicol
January 2025
Department of Medical Biochemistry, Faculty of Medicine, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey.
Neurodegenerative diseases are significant health concerns that have a profound impact on the quality and duration of life for millions of individuals. These diseases are characterized by pathological changes in various brain regions, specific genetic mutations associated with the disease, deposits of abnormal proteins, and the degeneration of neurological cells. As neurodegenerative disorders vary in their epidemiological characteristics and vulnerability of neurons, treatment of these diseases is usually aimed at slowing disease progression.
View Article and Find Full Text PDFPak J Pharm Sci
January 2025
Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Airlangga, University, Surabaya, Indonesia.
This study attempts to prove that the antioxidant effect of fucoxanthin nanoparticles can prevent streptozotocin-induced rat liver damage. Fucoxanthin nanoparticles are synthesized using the high-energy ball milling method. Dynamic Light Scattering (DLS) was then used to describe the sizes of the fucoxanthin nanoparticles.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
March 2025
Department of Cardiology, Xinjiang Traditional Chinese Medicine Hospital, Xinjiang, China.
Schizophrenia (Heidelb)
January 2025
Xinjiang Clinical Medical Research Center of Mental Health, State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
Oxidative stress (OS) is crucial in schizophrenia (SCZ) pathology. Ferroptosis, a recently discovered cell death pathway linked to OS, might contribute to the development of SCZ. This study investigated the association between ferroptosis markers and cognitive impairments in chronic SCZ patients.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
Age-related macular degeneration (AMD) is a major cause of vision loss among adults. We investigated the protective effects of passion fruit seed extract (PFSE) and its rich polyphenol piceatannol in an AMD cell model in which human retinal pigment epithelial ARPE-19 cells were exposed to hydrogen peroxide (HO). Using a cell viability WST-8 assay, we revealed that PFSE and piceatannol increased the cellular viability of ARPE-19 cells by 130% and 133%, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!