Identification of tautomeric intermediates of a novel thiazolylazonaphthol dye - A density functional theory study.

Spectrochim Acta A Mol Biomol Spectrosc

Division of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden; Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.

Published: October 2018

The recently synthesized thiazolylazo dye, 1-[5-benzyl-1,3-thiazol-2-yl)diazenyl]naphthalene-2-ol called shortly BnTAN, is studied by density functional theory (DFT) in three tautomeric forms in order to explain the available H NMR, UV-Vis and FTIR spectra. An experimentally observed IR band at 1678 cm, assigned to the CO bond stretching vibration, supports the notion that BnTAN retains in the less stable keto-form even in the solid state due to an ultrafast single-coordinate intramolecular proton transfer. This finding is also in a good agreement with an X-ray crystallography analysis which indicates an intermediate position of the proton between the -OH and -N=N- groups. Calculations also show that some experimentally observed H NMR signals could be considered as being averaged values between theoretically calculated chemical shifts for the corresponding protons in the keto- and enol-tautomers. At the same time the UV-Vis spectra are almost insensitive to the tautomerization processes as the main single band absorption at 500 nm is present in all tautomers according to our TD DFT simulations. The minor differences in spectral features of the long-wavelength visible region are also noted and discussed with respect to the manifestation of the less stable tautomer form.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2018.05.096DOI Listing

Publication Analysis

Top Keywords

density functional
8
functional theory
8
experimentally observed
8
identification tautomeric
4
tautomeric intermediates
4
intermediates novel
4
novel thiazolylazonaphthol
4
thiazolylazonaphthol dye
4
dye density
4
theory study
4

Similar Publications

Perfusion Capacity as a Predictive Index for Assessing Visual Functional Recovery in Patients With Idiopathic Epiretinal Membrane.

Transl Vis Sci Technol

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.

Purpose: This study investigates the association between visual function and retinal vasculature metrics, particularly perfusion capacity (PC), in eyes with idiopathic epiretinal membrane (iERM), using optical coherence tomography angiography (OCTA).

Methods: This retrospective study includes 30 eyes from 30 iERM patients who had surgery, with a three-month follow-up period. In addition, 28 eyes from 28 healthy individuals served as a control group.

View Article and Find Full Text PDF

Endohedral boron-doped scandium clusters BSc ( = 2-3, = 3-13): triangular - linear rearrangement of the B dopant.

Dalton Trans

January 2025

Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam.

A theoretical investigation, employing density functional theory with the PBE functional and the Def2-TZVP basis set, comprehensively explores the geometric and electronic structures and properties of the boron doped scandium clusters BSc with = 2-3 and = 3-13. Introduction of B atoms significantly enhances the stability of the resulting clusters with respect to the initial counterparts. As the number of B atoms increases, the stability of the doped clusters improves, following the order: BSc > BSc > BSc > Sc.

View Article and Find Full Text PDF

Diabetes affects approximately 422 million people worldwide, leading to 1.5 million deaths annually and causing severe complications such as kidney failure, neuropathy, and cardiovascular disease. Aldose reductase (AR), a key enzyme in the polyol pathway, is an important therapeutic target for managing these complications.

View Article and Find Full Text PDF

Ultrahigh nickel cathode materials are widely utilized due to their outstanding energy and power densities. However, the presence of cobalt can cause significant lattice distortion during charge and discharge cycles, leading to the loss of active lithium, the formation of lattice cracks, and the emergence of a rock salt phase that hinders lithium-ion transport. Herein, we developed a novel cobalt-free, aluminum-doped cathode material, LiNiMnAlO (NMA), which effectively delays the harmful H2-H3 phase transition, reduces lattice distortion, alleviates stress release, and significantly enhances structural stability.

View Article and Find Full Text PDF

Photoelasticity of crystals with the scheelite structure: quantum mechanical calculations.

Acta Crystallogr B Struct Sci Cryst Eng Mater

February 2025

Faculty of Electrical Engineering, Czestochowa University of Technology, 17 Al. Armii Krajowej, Częstochowa, PL-42200, Poland.

We report a complete set of elastic, piezooptic and photoelastic tensor constants of scheelite crystals CaMoO, BaMoO, BaWO and PbWO determined by density functional theory (DFT) calculations using the quantum chemical software package CRYSTAL17. The modulation parameter, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!