Effects of interfacial interactions and interpenetrating brushes on the electrospinning of cellulose nanocrystals-polystyrene fibers.

J Colloid Interface Sci

Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada; National Institute for Nanotechnology, National Research Council of Canada, Edmonton, AB, Canada. Electronic address:

Published: October 2018

AI Article Synopsis

  • The study focused on electrospinning polystyrene solutions with modified cellulose nanocrystals (CNCs) to enhance fiber formation.
  • A link was found between the presence of beads on fibers and the dispersion quality of CNC particles in the solutions, with better dispersion resulting in fewer beads.
  • The best results came from using CNCs modified with trifluoromethyl benzene, leading to uniform fibers, while higher concentrations of grafted polystyrene chains caused bead formation due to interactions during solvent evaporation.

Article Abstract

This study investigated the electrospinning of polystyrene solutions using added unmodified and modified (with grafted nitrobenzene and trifluoromethyl benzene functionalities and polystyrene brushes) cellulose nanocrystals (CNCs). A strong correlation existed between the formation of beads on the fibers and the degree of dispersion of CNC particles in the electrospinning mixtures. Agglomerates of CNC particles always concentrated in the form of beads. The best dispersion in N,N dimethylformamide (DMF) mixtures was obtained using CNC-2 surfaces that were modified using trifluoromethyl benzene functional groups. Using CNC-2 also resulted in both uniform and bead-free electrospun fibers. Despite good dispersion in DMF, the use of grafted polystyrene (PS) chains with CNC-g resulted in beads above a 1.0% concentration level. This result is attributed to more favorable interactions between the CNC-g brushes during the DMF solvent evaporation stage of electrospinning. The electrospinning of CNC/PS nanocomposites at very low CNC concentrations (<1.0%) showed strong adhesion bonds at the polymer-CNC interfaces. Excellent mechanical properties were also produced by using interpenetrating networks of surface brushes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2018.04.089DOI Listing

Publication Analysis

Top Keywords

trifluoromethyl benzene
8
cnc particles
8
electrospinning
5
effects interfacial
4
interfacial interactions
4
interactions interpenetrating
4
interpenetrating brushes
4
brushes electrospinning
4
electrospinning cellulose
4
cellulose nanocrystals-polystyrene
4

Similar Publications

Improving the Blue Color Purity of Tetradentate Pt(II) Complexes with the Assistance of F⋅⋅⋅H Interaction towards High-Performance Blue Phosphorescent OLEDs with EQE over 33 .

Angew Chem Int Ed Engl

December 2024

Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.

Among the various challenges in the field of organic light-emitting diodes (OLEDs), simultaneously achieving high efficiency, a long lifespan, and a narrow full-width at half maximum (FWHM) in blue OLEDs remains a significant hurdle. Herein, we demonstrate a strategy to improve the color purity of tetradentate Pt(II) complexes with the assistance of ⋅⋅⋅H interaction by incorporating trifluoromethyl (-CF) groups into the well-known blue tetradentate Pt(II) phosphorescent complex. The results show that the different substitution positions of -CF have significantly varying effects on the FWHM values of the complexes; specifically, introducing -CF on the benzene ring of carbazole effectively reduces the FWHM, while introducing it on the benzene ring linked to the carbene unit has a minimal impact.

View Article and Find Full Text PDF

In searching for novel insecticide lead, 20 new meta-diamide compounds containing triazole were designed and synthesized regarding cyproflanilide as lead compound. All the compounds were characterized by H NMR, C NMR, and High-resolution mass spectra (HR MS). In preliminary bioassay, we found that one of the compounds: N-(cyclopropylmethyl)-N-(5-((2,6-dibromo-4-(1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl)phenyl)carbamoyl)-2-(1H-1,2,4-triazol-1-yl)phenyl)-6-(trifluoromethyl) nicotinamide (16a) had high activity against the target organism Plutella xylostella at 1 mg/L and against the target organism Mythimna separata at 2 mg/L.

View Article and Find Full Text PDF

The reported copper nanoclusters (Cu NCs) of either Cu or Cu or mixed valence (MV) Cu/Cu or Cu/Cu characters are found to be stabilized with a discrete set of ligand donors; hence, analogous Cu NCs with a common architecture supported by the same or nearly the same donor set that exhibit different MV states of Cu, such as Cu/Cu and Cu/Cu, are unknown. Such a series of highest nuclearity copper clusters supported by aromatic thiol-S donor ligands, namely [(L4)CuI15Cu(μ-S)](PF) (1), [(L4)CuI15Cu(μ-S)]ClO·8CH (2) and [(L4)CuI15Cu(DMF)](PF)·CHOH·2CH (3), where L = 2-((3-X-thiophen)-(2-yl-methylene)amino)-4-(trifluoromethyl)benzenethiol (X = H/Me), have been synthesized and their electronic structural properties have been examined and reported herein. The Cu NCs, 1 and 2, feature a central sulfido-S (S) bridged tetracopper SCu core inside a sphere-shaped CuS truncated octahedron.

View Article and Find Full Text PDF

The one-pot synthesis of diphenylacetylene by the reaction of methyl benzoate with 1-(benzylsulfonyl)-3,5-di(trifluoromethyl)benzene was developed. The combination of LiN(SiMe) and KN(SiMe) is key to promoting the reaction. Simply combining methyl benzoate, 1-(benzylsulfonyl)-3,5-di(trifluoromethyl)benzene, LiN(SiMe), and KN(SiMe) can produce a variety of diaryl acetylenes (28 examples, 18-70% yields).

View Article and Find Full Text PDF

In this work, the synthesis, structural analysis and anticancer properties of 5-methyl-9-trifluoromethyl-12-quino[3,4-][1,4]benzothiazinium chloride () are described. Compound was synthesized by reacting 1-methyl-4-butylthio-3-(benzoylthio)quinolinium chloride with 4-(trifluoromethyl)aniline, respectively. The structure of the resulting product was determined using H-NMR and C-NMR spectroscopy as well as HR-MS spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!