The Nipah virus has been transmitted from person-to-person via close contact in non-urban parts of India (including Kerala May 2018), Bangladesh, and the Philippines. It can cause encephalitis and pneumonia, and has a high case fatality rate. Nipah is a One Health zoonotic infectious disease linked to fruit bats, and sometimes pigs or horses. We advocate anticipating and preparing for urban and larger rural outbreaks of Nipah. Immediate enhanced preparations would include standardized guidance on infection prevention and control, and personal protective equipment, from the World Health Organization (WHO) on their OpenWHO website and 2018 "Managing Epidemics" handbook, along with adding best clinical practices by experts in countries with multiple outbreaks such as Bangladesh and India. Longer-term enhanced preparations include accelerating development of field diagnostics, antiviral drugs, immune-based therapies, and vaccines. WHO-coordinated multi-partner protocols to test investigational treatments, diagnostics, and vaccines are needed, by analogy to such protocols for Ebola during the unanticipated pan-epidemic in Guinea, Liberia, and Sierra Leone. Anticipating and preparing now for urban and rural Nipah outbreaks in nations with no experience with Nipah will help avoid the potential for what the United Nations 2016 report on Ebola in West Africa called a "preventable tragedy".
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7110759 | PMC |
http://dx.doi.org/10.1016/j.ijid.2018.05.015 | DOI Listing |
PLoS One
January 2025
Department of Mathematics, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan.
In biology and life sciences, fractal theory and fractional calculus have significant applications in simulating and understanding complex problems. In this paper, a compartmental model employing Caputo-type fractional and fractal-fractional operators is presented to analyze Nipah virus (NiV) dynamics and transmission. Initially, the model includes nine nonlinear ordinary differential equations that consider viral concentration, flying fox, and human populations simultaneously.
View Article and Find Full Text PDFPathology
December 2024
Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
Viral infections of the central nervous system (CNS) have been emerging and re-emerging worldwide, and the Australasia region has not been spared. Enterovirus A71 and enterovirus D68, both human enteroviruses, are likely to replace the soon-to-be eradicated poliovirus to cause global outbreaks associated with neurological disease. Although prevalent elsewhere, the newly emergent orthoflavivirus, Japanese encephalitis virus (genotype IV), caused human infections in Australia in 2021, and almost certainly will continue to do so because of spillovers from the natural animal host-vector life cycle endemic in the country.
View Article and Find Full Text PDFFront Microbiol
December 2024
Maximum Containment Facility, ICMR-National Institute of Virology, Pune, India.
Introduction: India has experienced seven outbreaks of the Nipah virus (NiV) since 2001, primarily occurring in the southern and eastern regions of the country. The southern region has been the main site for these outbreaks. In contrast, the eastern region, which borders Bangladesh, has not reported any outbreaks since 2007.
View Article and Find Full Text PDFJ Infect
January 2025
Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia. Electronic address:
Objective: To evaluate the long-term humoral immune response to Nipah virus (NiV) in a cohort of 25 survivors after 25 years of post-infection.
Methods: A total of 25 survivors of NiV infection from the 1998 outbreak were recruited for sample collection. The serum IgG antibody response to NiV antigens, specifically nucleocapsid (N), fusion glycoprotein (F) and attachment glycoprotein (G) was evaluated using ELISA.
Clin Microbiol Rev
December 2024
Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
SUMMARYHenipaviruses were first identified 30 years ago and have since been associated with over 30 outbreaks of disease in humans. Highly pathogenic henipaviruses include Hendra virus (HeV) and Nipah virus (NiV), classified as biosafety level 4 pathogens. In addition, NiV has been listed as a priority pathogen by the World Health Organization (WHO), the Coalition for Epidemic Preparedness Innovations (CEPI), and the UK Vaccines Research and Development Network (UKVN).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!