Application of small molecule CHIR99021 leads to the loss of hemangioblast progenitor and increased hematopoiesis of human pluripotent stem cells.

Exp Hematol

Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, Russian Federation; Department of Pathology, Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA. Electronic address:

Published: September 2018

Improving our understanding of the intricacies of hematopoietic specification of induced or embryonic human pluripotent stem cells is beneficial for many areas of research and translational medicine. Currently, it is not clear whether, during human pluripotent stem cells hematopoietic differentiation in vitro, the maturation of definitive progenitors proceeds through a primitive progenitor (hemangioblast) intermediate or if it develops independently. The objective of this study was to investigate the early stages of hematopoietic specification of pluripotent stem cells in vitro. By implementing an adherent culture, serum-free differentiation system that utilizes a small molecule, CHIR99021, to induce human pluripotent stem cells toward various hematopoietic lineages, we established that, compared with the OP9 coculture hematopoietic induction system, the application of CHIR99021 alters the early steps of hematopoiesis such as hemangioblasts, angiogenic hematopoietic progenitors, and hemogenic endothelium. Importantly, it is associated with the loss of hemangioblast progenitors, loss of CD43 (primitive hematopoietic marker) expression, and predominant development of blast-forming unit erythroid colonies in semisolid medium. These data support the hypothesis that the divergence of primitive and definitive programs during human pluripotent stem cells differentiation precedes the hemangioblast stage. Furthermore, we have shown that the inhibition of primitive hematopoiesis is associated with an increase in hematopoietic potential, which is a fruitful finding due to the growing need for lymphoid and myeloid cells in translational applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exphem.2018.05.007DOI Listing

Publication Analysis

Top Keywords

pluripotent stem
24
stem cells
24
human pluripotent
20
small molecule
8
molecule chir99021
8
loss hemangioblast
8
hematopoietic
8
hematopoietic specification
8
cells hematopoietic
8
cells
7

Similar Publications

Glucose Transporter 1 Deficiency Impairs Glucose Metabolism and Barrier Induction in Human Induced Pluripotent Stem Cell-Derived Astrocytes.

J Cell Physiol

January 2025

Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.

Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.

View Article and Find Full Text PDF

This paper introduces the current status of Seoul National University Hospital Dementia Brain Bank (SNUH-DBB), focusing on the concordance rate between clinical diagnoses and postmortem neuropathological diagnoses. We detail SNUH-DBB operations, including protocols for specimen handling, induced pluripotent stem cells (iPSC) and cerebral organoids establishment from postmortem dural fibroblasts, and adult neural progenitor cell cultures. We assessed clinical-neuropathological diagnostic concordance rate.

View Article and Find Full Text PDF

Protocol for live imaging of axonal transport in iPSC-derived iNeurons.

STAR Protoc

January 2025

Department of Neurology, University Medical Center Goettingen, 37077 Goettingen, Germany. Electronic address:

Studies of human induced pluripotent stem cell (iPSC)-derived neurons promise important insights into neurodegenerative diseases. Here, we present a protocol for live imaging of axonal transport in glutamatergic iPSC-derived neurons (iNeurons). We describe steps for the differentiation of iPSCs into iNeurons via PiggyBac-mediated neurogenin 2 (NGN2) delivery, iNeuron culture and transfection, and the acquisition and analysis of time-lapse images.

View Article and Find Full Text PDF

Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues.

Tissue Eng Regen Med

January 2025

Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, Fujian, China.

Background: The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.

Methods: We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.

View Article and Find Full Text PDF

Due to their self-renewal and differentiation capabilities, pluripotent stem cells hold immense potential for advancing our understanding of human disease and developing cell-based or pharmacological interventions. Realizing this potential, however, requires a thorough understanding of the basal cellular mechanisms which occur during differentiation. Lipids are critical molecules that define the morphological, biochemical, and functional role of cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!