The formation and life-long growth of the ocular lens depends on the continuous differentiation of lens epithelial cells into lens fiber cells. To achieve their mature structure and transparent function, newly formed lens fiber cells undergo a series of cellular remodeling events including the complete elimination of cellular organelles to form the lens organelle-free zone (OFZ). To date, the mechanisms and requirements for organelle elimination by lens fiber cells remain to be fully elucidated. In previous studies, we detected the presence of mitochondria contained within autophagolysosomes throughout human and chick lenses suggesting that proteins targeting mitochondria for degradation by mitophagy could be required for the elimination of mitochondria during OFZ formation. Consistently, high-throughput RNA sequencing of microdissected embryonic chick lenses revealed that expression of a protein that targets mitochondria for elimination during erythrocyte formation, called BCL2 interacting protein 3-like (BNIP3L/NIX), peaks in the region of lens where organelle elimination occurs. To examine the potential role for BNIP3L in the elimination of mitochondria during lens fiber cell remodeling, we analyzed the expression pattern of BNIP3L in newborn mouse lenses, the effect of its deletion on organelle elimination and its co-localization with lens organelles. We demonstrate that the expression pattern of BNIP3L in the mouse lens is consistent with it playing an important role in the elimination of mitochondria during lens fiber cell organelle elimination. Importantly, we demonstrate that deletion of BNIP3L results in retention of mitochondria during lens fiber cell remodeling, and, surprisingly, that deletion of BNIP3L also results in the retention of endoplasmic reticulum and Golgi apparatus but not nuclei. Finally, we show that BNIP3L localizes to the endoplasmic reticulum and Golgi apparatus of wild-type newborn mouse lenses and is contained within mitochondria, endoplasmic reticulum and Golgi apparatus isolated from adult mouse liver. These data identify BNIP3L as a novel requirement for the elimination of mitochondria, endoplasmic reticulum and Golgi apparatus during lens fiber cell remodeling and they suggest a novel function for BNIP3L in the regulation of endoplasmic reticulum and Golgi apparatus populations in the lens and non-lens tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6110959PMC
http://dx.doi.org/10.1016/j.exer.2018.06.003DOI Listing

Publication Analysis

Top Keywords

lens fiber
28
endoplasmic reticulum
24
reticulum golgi
24
golgi apparatus
24
elimination mitochondria
20
organelle elimination
16
fiber cell
16
lens
15
mitochondria endoplasmic
12
fiber cells
12

Similar Publications

Purpose: To evaluate the impact of Implantable Collamer Lens (ICL) implantation on anterior chamber angle parameters and posterior segment structures in highly myopic eyes and explore potential correlations between these changes. The study aimed to assess alterations in superficial and deep vessel density (SVD, DVD), foveal avascular zone (FAZ) area, and retinal nerve fiber layer (RNFL) thickness to clarify the safety profile of ICL implantation.

Methods: Prospective observational study, included 36 highly myopic eyes undergoing ICL implantation in surgery group and 23 non-surgical control eyes in non-surgery group.

View Article and Find Full Text PDF

RNA-binding proteins (RBPs) are critical regulators of mRNAs controlling all processes such as RNA transcription, transport, localization, translation, mRNA:ncRNA interactions, and decay. Cellular differentiation is driven by tissue-specific and/or tissue-preferred expression of proteins needed for the optimal function of mature cells, tissues and organs. Lens fiber cell differentiation is marked by high levels of expression of crystallin genes encoding critical proteins for lens transparency and light refraction.

View Article and Find Full Text PDF

There is an emerging wide use of nanotechnology in the medical fields. The information regarding distribution and clearance of gold nanoparticles (AuNPs) in the ocular tissue is insufficient. We investigated the cumulative effect of AuNPs on rat lens structure and their effect on the redox state and aquaporin-0 (AQP0) expression.

View Article and Find Full Text PDF

Availability of a suitable tool for carrying out non-invasive measurement of Raman signatures in situ, from biological tissues having low Raman cross section is a clinically unmet need faced with manifold challenges. A Raman probe can prove to be an invaluable component of clinical Raman diagnostic systems. We present development of a Raman probe capable of measuring artefact free Raman spectra of biological tissues in situ.

View Article and Find Full Text PDF

Cataracts are significant causes of blindness, closely linked to prolonged hypercholesterolemia. While saffron has the potential for eye health, its effects on lens lesions remain understudied. This study aimed to investigate the effect of saffron on the lens changes in atherosclerotic-induced New Zealand white rabbits (NZWR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!