A campaign for malaria control, using Long Lasting Insecticide Nets (LLINs) was launched in South Sudan in 2009. The success of such a campaign often depends upon adequate available resources and reliable surveillance data which help officials understand existing infections. An optimal allocation of resources for malaria control at a sub-national scale is therefore paramount to the success of efforts to reduce malaria prevalence. In this paper, we extend an existing SIR mathematical model to capture the effect of LLINs on malaria transmission. Available data on malaria is utilized to determine realistic parameter values of this model using a Bayesian approach via Markov Chain Monte Carlo (MCMC) methods. Then, we explore the parasite prevalence on a continued rollout of LLINs in three different settings in order to create a sub-national projection of malaria. Further, we calculate the model's basic reproductive number and study its sensitivity to LLINs' coverage and its efficacy. From the numerical simulation results, we notice a basic reproduction number, [Formula: see text], confirming a substantial increase of incidence cases if no form of intervention takes place in the community. This work indicates that an effective use of LLINs may reduce [Formula: see text] and hence malaria transmission. We hope that this study will provide a basis for recommending a scaling-up of the entry point of LLINs' distribution that targets households in areas at risk of malaria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5991726 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0198280 | PLOS |
Parasite
January 2025
Center of Excellence in Vector Biology and Vector-Borne Disease, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
Culicoides biting midges (Diptera: Ceratopogonidae) have been reported as potential vectors for haemoparasites. Information about host-vector-parasite specificity is required to confirm their status. Here, molecular detection of haemosporidians, Leishmania, trypanosomatids, and filarial nematodes in biting midges was conducted to understand their potential role as vectors, and their host preference was determined.
View Article and Find Full Text PDFMalar J
January 2025
Department of Geography, Geo-Informatics and Climatic Sciences, Makerere University, P.O Box 7062, Kampala, Uganda.
Background: Despite significant distribution of insecticide-treated net (ITNs) by the Government of Uganda to refugees, malaria is major cause of mortality and morbidity among children under five years in refugee settlements. This highlights the persistent challenges and complexities surrounding malaria control and prevention efforts in these settings. Studies that focus on the determinants of ITN utilization among children under five years in refugee settlements in Uganda are not available.
View Article and Find Full Text PDFMalar J
January 2025
Centro de Investigação Em Saúde de Manhiça, Fundação Manhiça, Maputo, Mozambique.
Background: Imported malaria from southern Mozambique drives low levels of disease transmission in KwaZulu-Natal, South Africa. Therefore, the South African Department of Health funded implementation of indoor residual spraying (IRS) in Mozambiquan districts identified as sources of malaria infection for border communities in KwaZulu-Natal. IRS was initiated in districts of Guija, Inharrime, Panda and Zavala.
View Article and Find Full Text PDFSci Rep
January 2025
Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
The evolution of genetic diversity and population structure of Plasmodium vivax as malaria elimination approaches remains unclear. This study analyzed the genetic variation and molecular epidemiology of P. vivax from Yala Province in southern Thailand, an area in the pre-elimination phase.
View Article and Find Full Text PDFActa Trop
January 2025
Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy.
The Anthropocene era is marked by unprecedented human-induced alterations to the environment, resulting in a climate emergency and widespread ecological deterioration. A staggering number of up to one million species of plants and animals are in danger of becoming extinct, which includes over 10% of insect species and 40% of plant species. Unrestrained release of greenhouse gases, widespread deforestation, intense agricultural practices, excessive fishing, and alterations in land use have exceeded the ecological boundaries that were once responsible for humanity's wellbeing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!