AI Article Synopsis

  • The study investigates the development of URX sensory dendrites in C. elegans and identifies distinct genetic mechanisms affecting their morphogenesis, specifically focusing on the role of MAPK-15 and SMA-1.
  • Disruption of these genes leads to adult dendrites overextending well beyond normal length, contrasting with earlier findings on ciliated dendrites that promote growth during embryogenesis.
  • The research suggests that mechanisms governing dendrite growth differ between developmental stages, highlighting a local regulatory role for MAPK-15 and implicating GCY-35 in controlling the structural integrity of sensory compartments at the dendrite endings.

Article Abstract

Neurons develop elaborate morphologies that provide a model for understanding cellular architecture. By studying C. elegans sensory dendrites, we previously identified genes that act to promote the extension of ciliated sensory dendrites during embryogenesis. Interestingly, the nonciliated dendrite of the oxygen-sensing neuron URX is not affected by these genes, suggesting it develops through a distinct mechanism. Here, we use a visual forward genetic screen to identify mutants that affect URX dendrite morphogenesis. We find that disruption of the MAP kinase MAPK-15 or the βH-spectrin SMA-1 causes a phenotype opposite to what we had seen before: dendrites extend normally during embryogenesis but begin to overgrow as the animals reach adulthood, ultimately extending up to 150% of their normal length. SMA-1 is broadly expressed and acts non-cell-autonomously, while MAPK-15 is expressed in many sensory neurons including URX and acts cell-autonomously. MAPK-15 acts at the time of overgrowth, localizes at the dendrite ending, and requires its kinase activity, suggesting it acts locally in time and space to constrain dendrite growth. Finally, we find that the oxygen-sensing guanylate cyclase GCY-35, which normally localizes at the dendrite ending, is localized throughout the overgrown region, and that overgrowth can be suppressed by overexpressing GCY-35 or by genetically mimicking elevated cGMP signaling. These results suggest that overgrowth may correspond to expansion of a sensory compartment at the dendrite ending, reminiscent of the remodeling of sensory cilia or dendritic spines. Thus, in contrast to established pathways that promote dendrite growth during early development, our results reveal a distinct mechanism that constrains dendrite growth throughout the life of the animal, possibly by controlling the size of a sensory compartment at the dendrite ending.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6007932PMC
http://dx.doi.org/10.1371/journal.pgen.1007435DOI Listing

Publication Analysis

Top Keywords

dendrite growth
12
dendrite
10
map kinase
8
elegans sensory
8
sensory dendrites
8
distinct mechanism
8
localizes dendrite
8
sensory compartment
8
compartment dendrite
8
sensory
7

Similar Publications

Article Synopsis
  • The study focused on dissimilar laser welding of AISI 1060 carbon steel and Duplex Stainless Steel 2205, using both experimental and numerical methods to analyze the impact of welding parameters.
  • The increase in laser power significantly influenced the melt pool depth, which rose from 0.4 mm to 1.4 mm when power was ramped up from 250 to 450 W, and the resultant microstructure varied between the two materials with distinct solidification patterns.
  • Tensile test results indicated that the carbon steel side exhibited brittle fracture, while the Duplex Stainless Steel showed a ductile fracture, highlighting the differing mechanical properties due to their respective microstructures and the transition towards ductility with increased laser energy density.
View Article and Find Full Text PDF

Axodendritic targeting of TAU and MAP2 and microtubule polarization in iPSC-derived versus SH-SY5Y-derived human neurons.

Open Life Sci

December 2024

Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 34, 50931, Cologne, Germany.

Cell polarity is crucial in neurons, characterized by distinct axonal and dendritic structures. Neurons generally have one long axon and multiple shorter dendrites, marked by specific microtubule (MT)-associated proteins, e.g.

View Article and Find Full Text PDF

Combined TLR2/TLR4 activation equip non-mucosal dendritic cells to prime Th1 cells with gut tropism.

iScience

December 2024

CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal.

Activated CD4 T cells located at mucosal surfaces orchestrate local effector immune mechanisms. When properly polarized, these cells contribute to block infections at early stages and may be essential to restrain the local growth of mucosal tumors, playing a critical role in host protection. How CD4 T cells simultaneously integrate gut-homing instructions and Th polarization signals transmitted by TLR activated dendritic cells (DCs) is unknown.

View Article and Find Full Text PDF

The sp Hybridization of Tin Single Atoms for Dendrite-Free Sodium Metal Batteries.

Adv Mater

January 2025

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.

Restricting the growth of sodium (Na) dendrites at the atomic level is the premise to enable both the stability and safety of sodium metal batteries (SMBs). Here, the universal synthesis of the fourth main group element (Sn, Ge, Pb) as single metal atoms anchored on graphene (Sn, Ge, Pb SAs/G) with sp hybridization for dendrite-free sodium metal anode is reported. The in situ real-time observation of Na growth on Sn SAs/G uncoils a kinetically uniform planar deposition at the atomic level for substantially suppressing the dendrite growth.

View Article and Find Full Text PDF

In situ Polymerized Solid-State Electrolyte Enabling Inorganic-Organic Dual-Layered SEI Film for Stable Lithium Metal Batteries.

Small

January 2025

School of Environment and Energy, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510006, P. R. China.

In situ polymerization of cyclic ethers is a promising strategy to construct solid-state lithium (Li) metal batteries with high energy density and safety. However, their practical applications are plagued by the unsatisfactory electrochemical properties of polymer electrolytes and the unstable solid electrolyte interphase (SEI). Herein, organic perfluorodecanoic acid (PFDA) is proposed as a new initiator to polymerize 1,3-dioxolane electrolyte (PDOL), which enables the as-obtained PDOL electrolyte to deliver greatly enhanced ionic conductivity and broadened electrochemical window.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!