Several chitosan sodium tripolyphosphate (TPP) nanoparticles embedded with Torreya grandis aril essential oils (TEOs) were synthesized using an emulsion-ionic gelation technique. Mannosylerythritol lipid A (MEL-A), a type of biosurfactant, was selected as the emulsifier. In order to replace acetic acid, an ionic liquid (IL) was employed to dissolve chitosan. The physical properties, diameters, morphology, embedding rate, and antibacterial effects of those essential oil loaded chitosan (CS) nanoparticles were characterized. The results demonstrated that chitosan nanoparticles can be successfully prepared in an ionic liquid containing system and the diameters for nanoparticles in acetic acid and ionic liquid solutions are 144.1 ± 1.457 and 219.0 ± 4.045 nm. After loading with essential oils, the size increased to 349.6 ± 10.55 and 542.9 ± 16.74 nm, respectively. Antibacterial properties were investigated by the observation of the inhibition zone against S. aureus. The results revealed that TEO loaded nanoparticles synthesized in acid and IL aqueous systems have stronger antibacterial activities than CS nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.8b01428DOI Listing

Publication Analysis

Top Keywords

ionic liquid
16
chitosan nanoparticles
12
essential oils
12
antibacterial effects
8
nanoparticles embedded
8
liquid system
8
acetic acid
8
acid ionic
8
nanoparticles
7
chitosan
5

Similar Publications

Deep eutectic solvent (DES)-based conductive hydrogels have attracted great interest in the building of flexible electronic devices that can be used to replace conventional temperature-intolerant hydrogels and expensive ionic liquid gels. However, current DES-based conductive hydrogels obtained have limited mechanical strength, high hysteresis, and poor microdeformation sensitivity of the assembled sensors. In this work, a rubber-like conductive hydrogel based on -acryloylglycinamide (NAGA) and DES (acetylcholine chloride/acrylamide) has been synthesized by a one-step method.

View Article and Find Full Text PDF

Novel Collector of a Dodecylpyridinium Chloride Ionic Liquid in the Reverse Flotation Separation of Muscovite from Apatite.

Langmuir

January 2025

Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources of Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.

Reverse flotation separation of muscovite from apatite using a dodecylpyridinium chloride (DPDC) ionic liquid as the collector was studied in this work. The microflotation results depicted that DPDC had a strong collecting for muscovite but had a slight collecting for apatite when using phosphoric acid as a depressant for apatite in a weakly acidic pH value pulp, artificial mixture mineral flotation showed that reverse flotation separation of muscovite from apatite can be effectively achieved in the reagent scheme of phosphoric acid/DPDC, and DPDC had a better separation performance in the muscovite/apatite system than DDA. The adsorption measurements indicated that the adsorption amount of DPDC on the apatite surface was less than that of DPDC on the muscovite surface, and the zeta potential results confirmed that a strong interaction occurred between DPDC and the muscovite surface, while an extremely weak interaction occurred between DPDC and the apatite surface in the presence of phosphoric acid at pH ∼ 5.

View Article and Find Full Text PDF

Cellulose-based poly(ionic liquid)s: Correlations between degree of substitution and alkyl side chain length with conductive and morphological properties.

Int J Biol Macromol

January 2025

Department of Chemistry, Rutgers University, Camden, NJ, United States of America; Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States of America. Electronic address:

Ion transport in solid polymer electrolytes is crucial for applications like energy conversion and storage, as well as carbon dioxide capture. However, most of the materials studied in this area are petroleum-based. Natural materials (biopolymers) have the potential to act as alternatives to petroleum-based products and, when derived with ionic liquid (IL) functionalities, present a sustainable alternative for conductive materials by offering tunable morphological, thermal, and mechanical properties.

View Article and Find Full Text PDF

Carboxylic acids and aromatic compounds are essential building blocks and starting materials for the production of a wide range of fine chemicals and materials. Their recovery from kraft black liquor, an industrial effluent from pulp and paper mills, is a promising way to produce alternative bio-based chemicals. Reliable methods are needed to identify and quantify the molecules of interest in complex mixtures such as black liquors.

View Article and Find Full Text PDF

Robust Mechanically Interlocked Network Ionogels.

Angew Chem Int Ed Engl

January 2025

Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, 800 Dongchuan Road, 200240, Shanghai, CHINA.

Ionogels have attracted considerable attention as versatile materials due to their unique ionic conductivity and thermal stability. However, relatively weak mechanical performance of many existing ionogels has hindered their broader application. Herein, we develop robust, tough, and impact-resistant mechanically interlocked network ionogels (IGMINs) by incorporating ion liquids with mechanical bonds that can dissipate energy while maintain structural stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!