The KDM6 subfamily of histone lysine demethylases has recently been implicated as a putative target in the treatment of a number of diseases; this makes the availability of potent and selective inhibitors important. Due to high sequence similarity of the catalytic domain of Jumonji C histone demethylases, the development of small-molecule, family-specific inhibitors has, however, proven challenging. One approach to achieve the selective inhibition of these enzymes is the use of peptides derived from the substrate, the histone 3 C terminus. Here we used computational methods to optimize such inhibitors of the KDM6 family. Through natural amino acid substitution, it is shown that a K18I variant of a histone H3 derived peptide significantly increases affinity towards the KDM6 enzymes. The crystal structure of KDM6B in complex with a histone 3 derived K18I peptide reveals a tighter fit of the isoleucine side chain, compared with that of the arginine. As a consequence, the peptide R17 residue also has increased hydrophilic interactions. These interactions of the optimized peptide are likely to be responsible for the increased affinity to the KDM6 enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.201800185 | DOI Listing |
As epigenetic therapies continue to gain ground as potential treatment strategies for cancer and other diseases, compounds that target histone lysine methylation and the enzyme complexes represent a major frontier for therapeutic development. Clinically viable therapies targeting the activities of histone lysine methyltransferases (HKMT) and demethylases (HKDMs) have only recently begun to emerge following FDA approval of the EZH2 inhibitor tazemetostat in 2020 and remain limited to compounds targeting the well-studied SET domain-containing HKMTs and their opposing HKDMs. These include the H3K27 methyltransferases EZH2/EZH1, the singular H3K79 methyltransferase DOT1L, and the H3K4 methyltransferase MLL1/COMPASS as well as H3K9 and H3K36 methyltransferases.
View Article and Find Full Text PDFArthritis Rheumatol
March 2024
Kao Autoimmunity Institute and Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
Objective: We aimed to investigate the hypothesis that interferon (IFN)-stimulated gene (ISG) expression in systemic lupus erythematosus (SLE) monocytes is linked to changes in metabolic reprogramming and epigenetic regulation of ISG expression.
Methods: Monocytes from healthy volunteers and patients with SLE at baseline or following IFNα treatment were analyzed by extracellular flux analysis, proteomics, metabolomics, chromatin immunoprecipitation, and gene expression. The histone demethylases KDM6A/B were inhibited using glycogen synthase kinase J4 (GSK-J4).
Adv Exp Med Biol
September 2023
Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Center for Medical Genetics, Ghent University, Medical Research Building 2 (MRB2), Entrance 38, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
Histone lysine methylation is a major epigenetic modification that participates in several cellular processes including gene regulation and chromatin structure. This mark can go awry in disease contexts such as cancer. Two decades ago, the discovery of histone demethylase enzymes thirteen years ago sheds light on the complexity of the regulation of this mark.
View Article and Find Full Text PDFMatrix Biol
September 2023
Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China. Electronic address:
Intestinal fibrosis is a prevalent complication of Crohn's disease (CD), characterized by excessive deposition of extracellular matrix (ECM), and no approved drugs are currently available for its treatment. Sirtuin 4 (SIRT4), a potent anti-fibrosis factor in mitochondria, has an unclear role in intestinal fibrosis. In this study, fibroblasts isolated from biopsies of stenotic ileal mucosa in CD patients were analyzed to identify the most down-regulated protein among SIRT1-7, and SIRT4 was found to be the most affected.
View Article and Find Full Text PDFCancer Metastasis Rev
June 2023
Department of Biochemistry, Albert Einstein College of Medicine, The Bronx, New York City, NY, 10461, USA.
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults with an average survival of 15-18 months. Part of its malignancy derives from epigenetic regulation that occurs as the tumor develops and after therapeutic treatment. Specifically, enzymes involved in removing methylations from histone proteins on chromatin, i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!