There are neural recording applications in which the amplitude of common-mode interfering signals is several orders of magnitude higher than the amplitude of the signals of interest. This challenging situation for neural amplifiers occurs, among other applications, in neural recordings of weakly electric fish or nerve activity recordings made with cuff electrodes. This paper reports an integrated neural amplifier architecture targeting in-vivo recording of local field potentials and unitary signals from the brain stem of a weakly electric fish Gymnotus omarorum. The proposed architecture offers low noise, high common-mode rejection ratio (CMRR), current-efficiency, and a high-pass frequency fixed without MOS pseudoresistors. The main contributions of this work are the overall architecture coupled with an efficient and simple single-stage circuit for the amplifier main transconductor, and the ability of the amplifier to acquire biopotential signals from high-amplitude common-mode interference in an unshielded environment. A fully-integrated neural preamplifier, which performs well in line with the state-of-the-art of the field while providing enhanced CMRR performance, was fabricated in a 0.5 m CMOS process. Results from measurements show that the gain is 49.5 dB, the bandwidth ranges from 13 Hz to 9.8 kHz, the equivalent input noise is 1.88 V, the CMRR is 87 dB and the Noise Efficiency Factor is 2.1. In addition, in-vivo recordings of weakly electric fish neural activity performed by the proposed amplifier are introduced and favorably compared with those of a commercial laboratory instrumentation system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBCAS.2018.2826720 | DOI Listing |
Light Sci Appl
January 2025
Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
A major challenge in neuroscience is visualizing the structure of the human brain at different scales. Traditional histology reveals micro- and meso-scale brain features but suffers from staining variability, tissue damage, and distortion, which impedes accurate 3D reconstructions. The emerging label-free serial sectioning optical coherence tomography (S-OCT) technique offers uniform 3D imaging capability across samples but has poor histological interpretability despite its sensitivity to cortical features.
View Article and Find Full Text PDFNat Commun
January 2025
School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
Inferring appropriate synthesis reaction (i.e., retrosynthesis) routes for newly designed molecules is vital.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
School of Applied Science and Humanities, Haldia Institute of Technology, ICARE Complex, Haldia 721657, India.
This study explores the reactivity of a new intermolecular P/B frustrated Lewis pair in the context of dinitrogen activation through a push-pull mechanism. The ab initio molecular dynamics model known as atom-centered density matrix propagation plays a pivotal role in elucidating the weakly associated encounter complex. In-depth analysis, mainly through intrinsic reaction coordinate calculations, supports a single-step mechanism.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-111, Iran.
Unlabelled: There is a growing interest in utilizing 3D culture models for stem cell and cancer cell research due to their closer resemblance to in vivo environments. In this study, human mesenchymal stem cells (MSCs) were cultured using adipocytes and osteocytes as differentiative mediums on varying concentrations of chitosan substrate. Light microscopy was employed to capture cell images from the first day to the 21st day of differentiation.
View Article and Find Full Text PDFNat Commun
January 2025
Research Laboratory of Electronics, MIT, Cambridge, MA, USA.
Three-dimensional subcellular imaging is essential for biomedical research, but the diffraction limit of optical microscopy compromises axial resolution, hindering accurate three-dimensional structural analysis. This challenge is particularly pronounced in label-free imaging of thick, heterogeneous tissues, where assumptions about data distribution (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!