Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Peptide agonists acting on the glucagon-like peptide 1 receptor (GLP-1R) promote glucose-dependent insulin release and therefore represent important therapeutic agents for type 2 diabetes (T2D). Previous data indicated that an N-terminal type II β-turn motif might be an important feature for agonists acting on the GLP-1R. In contrast, recent publications reporting the structure of the full-length GLP-1R have shown the N-terminus of receptor-bound agonists in an α-helical conformation. To reconcile these conflicting results, we prepared N-terminally constrained analogues of glucagon-like peptide 1 (GLP-1) and exendin-4 and evaluated their receptor affinity and functionality in vitro; we then examined their crystal structures in complex with the extracellular domain of the GLP-1R and used molecular modeling and molecular dynamics simulations for further investigations. We report that the peptides' N-termini in all determined crystal structures adopted a type II β-turn conformation, but in vitro potency varied several thousand-fold across the series. Potency correlated better with α-helicity in our computational model, although we have found that the energy barrier between the two mentioned conformations is low in our most potent analogues and the flexibility of the N-terminus is highlighted by the dynamics simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.8b00105 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!