The effects of arousal on apical amplification and conscious state.

Neurosci Conscious

Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA.

Published: September 2016

Neocortical pyramidal cells can integrate two classes of input separately and use one to modulate response to the other. Their tuft dendrites are electrotonically separated from basal dendrites and soma by the apical dendrite, and apical hyperpolarization-activated currents (I) further isolate subthreshold integration of tuft inputs. When apical depolarization exceeds a threshold, however, it can enhance response to the basal inputs that specify the cell's selective sensitivity. This process is referred to as apical amplification (AA). We review evidence suggesting that, by regulating I in the apical compartments, adrenergic arousal controls the coupling between apical and somatic integration zones thus modifying cognitive capabilities closely associated with consciousness. Evidence relating AA to schizophrenia, sleep, and anesthesia is reviewed, and we assess theories that emphasize the relevance of AA to consciousness. Implications for theories of neocortical computation that emphasize context-sensitive modulation are summarized. We conclude that the findings concerning AA and its regulation by arousal offer a new perspective on states of consciousness, the function and evolution of neocortex, and psychopathology. Many issues worthy of closer examination arise.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5934888PMC
http://dx.doi.org/10.1093/nc/niw015DOI Listing

Publication Analysis

Top Keywords

apical amplification
8
apical
7
effects arousal
4
arousal apical
4
amplification conscious
4
conscious state
4
state neocortical
4
neocortical pyramidal
4
pyramidal cells
4
cells integrate
4

Similar Publications

Human nasal epithelium (HNE) organoid models of SARS-CoV-2 infection were adopted globally during the COVID-19 pandemic once it was recognized that the Vero cell line commonly used by virologists did not recapitulate human infection. However, the widespread use of HNE organoid infection models was hindered by the high cost of media and consumables, and the inherent limitation of basal cells as a scalable continuous source of cells. The human Calu-3 cell line, generated from a lung adenocarcinoma, was shown to largely recapitulate infection of the human epithelium and to preserve the SARS-CoV-2 genomic fidelity.

View Article and Find Full Text PDF

The gastrointestinal tract is a prominent portal of entry for HIV-1 during sexual or perinatal transmission, as well as a major site of HIV-1 persistence and replication. Elucidation of underlying mechanisms of intestinal HIV-1 infection are thus needed for the advancement of HIV-1 curative therapies. Here, we present a human 2D intestinal immuno-organoid system to model HIV-1 disease that recapitulates tissue compartmentalization and epithelial-immune cellular interactions.

View Article and Find Full Text PDF

Stem cells derived from the apical papilla (SCAPs) play a crucial role in tooth root development and dental pulp regeneration. They are important seed cells for bone/tooth tissue engineering. However, replicative senescence remains an unavoidable issue as in vitro amplification increases.

View Article and Find Full Text PDF

Here we describe a type of depolarising plateau potentials (PPs; sustained depolarisations outlasting the stimuli) in layer 2/3 pyramidal cells (L2/3PC) in rat prefrontal cortex (PFC) slices, using whole-cell somatic recordings. To our knowledge, this PP type has not been described before. In particular, unlike previously described plateau potentials that originate in the large apical dendrite of L5 cortical pyramidal neurons, these L2/3PC PPs are generated independently of the apical dendrite.

View Article and Find Full Text PDF

First Report of Diplodia Shoot Blight and Canker Disease Caused by on Ponderosa Pine in Colorado, USA.

Plant Dis

November 2024

Colorado State University, Department of Agricultural Biology, 1177 Campus Delivery, Fort Collins, Colorado, United States, 80523;

Article Synopsis
  • Diplodia shoot blight and canker disease (DSB) is caused by the fungal pathogen Diplodia sapinea and primarily affects 2-3 needled pines, such as ponderosa pine, resulting in various symptoms including necrotic needles, cankers, and dieback.
  • The pathogen can exist without visible symptoms in trees, making it difficult to detect, and outbreaks are more common in stressed environments like nurseries and seed orchards.
  • Although D. sapinea has not been previously reported in Colorado, studies confirmed its presence and pathogenicity after observing symptoms in ponderosa pines in Wyoming in 2018 and discovering symptomatic trees in Colorado in 2021.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!