A scanning laser-based back light three-dimensional (3D) display capable of rendering full-resolution, low crosstalk, and vivid 3D depth perception has been developed by incorporating time-sequential multiplexing and eye-tracking technologies. This system includes three main subsystems: a scanning laser module, a relay transfer unit created by combining multiple transmissive-type electrically addressed ferroelectric liquid crystal spatial light modulators (FLC-SLMs), and a dual-directional transmission screen (DDTS) unit that can produce different angular magnification factors in both the tangential and sagittal planes. The light beam is directed by the DDTS after transmission through FLC-SLMs, and left and right eye viewing zones are produced sequentially in accordance with the locations of clear apertures in the FLC-SLM that are controlled based on data from the eye-tracking system. Owing to the persistence of human vision, 3D images are formed as a result of the high-speed scanning backlight and fast response characteristics of the FLC-SLM. A prototype of the proposed 3D display was designed and built, and experiments were carried out. The experimental results verify the feasibility of the proposed scheme, and full-resolution images with natural 3D perception are demonstrated by the prototype.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.57.004457 | DOI Listing |
Environ Monit Assess
January 2025
School of Earth Sciences, East China University of Technology, Nanchang, 330013, China.
Investigating the effects of urbanization at the county level on the balance of the carbon budget is essential for progress toward achieving "dual carbon" objectives at the county scale. Based on land use and economic data, this study elucidates the spatiotemporal evolution of urbanization and carbon budget balance ratio in 84 counties in Jiangxi Province from 1980 to 2020. Optimal geographic detectors and geographically weighted random forests were used to explore the impact of urbanization on the carbon budget balance ratio.
View Article and Find Full Text PDFJ Xenobiot
January 2025
Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia.
Engineered light-sensitive molecules offer a sophisticated toolkit for the manipulation of biological systems with both spatial and temporal precision. Notably, artificial "caged" compounds can activate specific receptors solely in response to light exposure. However, the uncaging process can lead to the formation of potentially harmful byproducts.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
Computed tomography (CT) imaging has emerge as an effective medical diagnostic technique due to its rapid and 3D imaging capabilities, often employing indirect imaging methods through scintillator materials. Arraying scintillators that can confine light scattering to enable high-resolution CT imaging remains an area of ongoing exploration for emerging perovskite scintillators. Here an anti-scattering cesium lead bromide (CsPbBr) scintillator array embedded within a polyurethane acrylate matrix for CT imaging using a cost-effective solution-processed method is reported.
View Article and Find Full Text PDFJ Biomed Opt
January 2025
CIFICEN (UNCPBA - CICPBA - CONICET), Tandil, Argentina.
Significance: In the last years, time-resolved near-infrared spectroscopy (TD-NIRS) has gained increasing interest as a tool for studying tissue spectroscopy with commercial devices. Although it provides much more information than its continuous wave counterpart, accurate models interpreting the measured raw data in real time are still lacking.
Aim: We introduce an analytical model that can be integrated and used in TD-NIRS data processing software and toolkits in real time.
Front Public Health
January 2025
School of Computer Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, China.
The accuracy of spatial clustering detection is crucial for public health policy development and identifying etiological clues. Circular and flexibly-shaped scan statistics are widely used for disease cluster detection, but differences in results arise mainly due to parameter sensitivity and variations in the scanning window shapes. This study aims to analyze the impact of parameter settings on the results of these methods and compare their performance in disease clustering detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!