A Magnesium Oxide Bezoar.

Intern Med

Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan.

Published: November 2018

A 75-year-old Japanese woman presented with nausea and appetite loss. Computed tomography showed a radiopaque substance in the stomach. Esophagogastroduodenoscopy revealed bezoars in the stomach, which were endoscopically retrieved. The bezoars were mainly composed of magnesium and oxide. Although bezoar formation associated with magnesium oxide consumption is infrequently encountered, the present case indicates that pharmacobezoar should be considered among the differential diagnoses in patients who demonstrate a radiopaque mass in the digestive tract and have a history of magnesium oxide use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6262705PMC
http://dx.doi.org/10.2169/internalmedicine.1124-18DOI Listing

Publication Analysis

Top Keywords

magnesium oxide
16
oxide bezoar
8
magnesium
4
bezoar 75-year-old
4
75-year-old japanese
4
japanese woman
4
woman presented
4
presented nausea
4
nausea appetite
4
appetite loss
4

Similar Publications

This study focuses on the synthesis of a novel Cerium-Magnesium (CeO-MgO) binary oxide nanomaterials by a simple co-precipitation process and used to remove harmful pollutants such as Cr(VI), Cu(II), and F. The morphology, phase, crystallite size, thermal stability, functional groups, surface area, and porosity of the synthesized nanomaterial were determined by using XRD, SEM, FTIR, TGA/DTA, and BET studies. The prepared nanomaterials showed adsorption selectivity of Cu(II) ≈ F> Cr(VI) with a high adsorption capacity of 84.

View Article and Find Full Text PDF

Background/objectives: Magnesium (Mg)-based food supplements contribute to the maintenance of adequate levels of Mg that are essential for overall health and well-being. The aim of this double-blind, randomized, cross-over clinical study was to assess the plasma Mg levels in volunteers following the oral administration of a magnesium-based nutraceutical ingredient, MAGSHAPE microcapsules (Mg-MS), in comparison to other commonly used magnesium sources, including the following: Mg Oxide (MgO), Mg Citrate (Mg-C), and Mg bisglycinate (Mg-BG).

Methods: A total of 40 healthy women and men were put on a low-Mg diet for 7 days, and after 8 h of fasting, a blood sample was taken from a digital puncture before (0 h) and 1 h, 4 h, and 6 h after the oral intake of each product.

View Article and Find Full Text PDF

The erosion caused by high-temperature calcium-magnesium-alumina-silicate (CMAS) has emerged as a critical impediment to the advancement of thermal barrier coating (TBC). In this study, a series of high-entropy rare earth zirconates, (LaSmDyErGd)(ZrCe)O ( = 0, 0.2, 0.

View Article and Find Full Text PDF

LiMnO, a significant cathode material for lithium-ion batteries, has garnered considerable attention due to its low cost and environmental friendliness. However, its widespread application is constrained by its rapid capacity degradation and short cycle life at elevated temperatures. To enhance the electrochemical performance of LiMnO, we employed a liquid-phase co-precipitation and calcination method to incorporate Cr into the LiMnO cathode material, successfully synthesizing a series of LiCrMnO (x = 0~0.

View Article and Find Full Text PDF

Copper(II) oxide nanoparticles (CuO NPs) are used in different industries and agriculture, thus leading to their release to the environment, which raises concerns about their ecotoxicity and biosafety. The main toxicity mechanism of nanometals is oxidative stress as a result of the formation of reactive oxygen species caused by metal ions released from nanoparticles. Bacterial biofilms are more resistant to physical and chemical factors than are planktonic cells due to the extracellular polymeric matrix (EPM), which performs a protective function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!