Labeling of endothelial cells with magnetic microbeads by angiophagy.

Biotechnol Lett

Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Walther Hall, R3 Research Building, Room C644, 980 W Walnut St., Indianapolis, IN, 46202, USA.

Published: August 2018

Objectives: Attachment of magnetic particles to cells is needed for a variety of applications but is not always possible or efficient. Simpler and more convenient methods are thus desirable. In this study, we tested the hypothesis that endothelial cells (EC) can be loaded with micron-size magnetic beads by the phagocytosis-like mechanism 'angiophagy'. To this end, human umbilical vein EC (HUVEC) were incubated with magnetic beads conjugated or not (control) with an anti-VEGF receptor 2 antibody, either in suspension, or in culture followed by re-suspension using trypsinization.

Results: In all conditions tested, HUVEC incubation with beads induced their uptake by angiophagy, which was confirmed by (i) increased cell granularity assessed by flow cytometry, and (ii) the presence of an F-actin rich layer around many of the intracellular beads, visualized by confocal microscopy. For confluent cultures, the average number of beads per cell was 4.4 and 4.2, with and without the presence of the anti-VEGFR2 antibody, respectively. However, while the actively dividing cells took up 2.9 unconjugated beads on average, this number increased to 5.2 if binding was mediated by the antibody. Magnetic pulldown increased the cell density of beads-loaded cells in porous electrospun poly-capro-lactone scaffolds by a factor of 4.5 after 5 min, as compared to gravitational settling (p < 0.0001).

Conclusion: We demonstrated that EC can be readily loaded by angiophagy with micron-sized beads while attached in monolayer culture, then dispersed in single-cell suspensions for pulldown in porous scaffolds and for other applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538283PMC
http://dx.doi.org/10.1007/s10529-018-2581-9DOI Listing

Publication Analysis

Top Keywords

endothelial cells
8
magnetic beads
8
increased cell
8
average number
8
beads
6
cells
5
magnetic
5
labeling endothelial
4
cells magnetic
4
magnetic microbeads
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!