Molecular imaging assessment of periodontitis lesions in an experimental mouse model.

Clin Oral Investig

Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.

Published: February 2019

Objective: We aimed to evaluate molecular imaging as a novel diagnostic tool for mice periodontitis model induced by ligature and Porphyromonas gingivalis (Pg) inoculation.

Materials And Methods: Twelve female mice were assigned to the following groups: no treatment as control group (n = 4); periodontitis group induced by ligature and Pg as Pg group (n = 4); and Pg group treated with glycyrrhizinic acid (GA) as Pg + GA group (n = 4). All mice were administered a myeloperoxidase (MPO) activity-specific luminescent probe and observed using a charge-coupled device camera on day 14. Image analysis on all mice was conducted using software to determine the signal intensity of inflammation. Additionally, histological and radiographic evaluation for periodontal inflammation and bone resorption at the site of periodontitis, and quantitative enzyme-linked immunosorbent assay (ELISA) were conducted on three mice for each group. Each experiment was performed three times.

Results: Levels of serum IgG antibody against P. gingivalis were significantly higher in the Pg than in the Pg + GA group. Histological analyses indicated that the number of osteoclasts and neutrophils were significantly lower in the Pg + GA than in the Pg group. Micro-CT image analysis indicated no difference in bone resorption between the Pg and Pg + GA groups. The signal intensity of MPO activity was detected on the complete craniofacial image; moreover, strong signal intensity was localized specifically at the periodontitis site in the ex vivo palate, with group-wise differences.

Conclusions: Molecular imaging analysis based on MPO activity showed high sensitivity of detection of periodontal inflammation in mice.

Clinical Relevance: Molecular imaging analysis based on MPO activity has potential as a diagnostic tool for periodontitis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00784-018-2510-2DOI Listing

Publication Analysis

Top Keywords

molecular imaging
16
group n = 4
12
signal intensity
12
mpo activity
12
diagnostic tool
8
induced ligature
8
group
8
image analysis
8
periodontal inflammation
8
bone resorption
8

Similar Publications

Background: Up to 23% of breast cancer patients recurred within a decade after trastuzumab treatment. Conversely, one trial found that patients with low HER2 expression and metastatic breast cancer had a positive response to trastuzumab-deruxtecan (T-Dxd). This indicates that relying solely on HER2 as a single diagnostic marker to predict the efficacy of anti-HER2 drugs is insufficient.

View Article and Find Full Text PDF

Liquid cell transmission electron microscopy (LCTEM) is a powerful technique for investigating crystallisation dynamics with nanometre spatial resolution. However, probing phenomena occurring in liquids while mixing two precursor solutions has proven extremely challenging, requiring sophisticated liquid cell designs. Here, we demonstrate that introducing and withdrawing solvents in sequence makes it possible to maintain optimal imaging conditions while mixing liquids in a commercial liquid cell.

View Article and Find Full Text PDF

PET molecular imaging-based prevention for brain aging.

Eur J Nucl Med Mol Imaging

January 2025

Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.

View Article and Find Full Text PDF

Enhancing immunotherapy efficacy in colorectal cancer: targeting the FGR-AKT-SP1-DKK1 axis with DCC-2036 (Rebastinib).

Cell Death Dis

January 2025

The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.

This research demonstrates that DCC-2036 (Rebastinib), a potent third-generation tyrosine kinase inhibitor (TKI), effectively suppresses tumor growth in colorectal cancer (CRC) models with functional immune systems. The findings underscore the capacity of DCC-2036 to enhance both the activation and cytotoxic functionality of CD8 T cells, which are crucial for facilitating anti-tumor immune responses. Through comprehensive multi-omics investigations, significant shifts in both gene and protein expression profiles were detected, notably a marked decrease in DKK1 levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!