This study provides empirical evidence for antagonistic density dependence mechanisms driving sexual reproduction in the wheat fungal pathogen Zymoseptoria tritici. Biparental crosses with 12 increasing inoculum concentrations, in controlled conditions, showed that sexual reproduction in Z. tritici was impacted by an Allee effect due to mate limitation and a competition with asexual multiplication for resource allocation. The highest number of ascospores discharged was reached at intermediate inoculum concentrations (from 5 × 10 conidia mL to 10 conidia mL). Consistent with these results for controlled co-inoculation, we found that the intensity of sexual reproduction varied with both cropping period and the vertical position of the host tissues in the field, with a maximum between 25 and 35 cm above the ground. An optimal lesion density (disease severity of 30 to 45%) maximizing offspring (ascospores) number was established, and its eco-evolutionary consequences are considered here. Two ecological mechanisms may be involved: competition for resources between the two modes of reproduction (decrease in the host resources available for sexual reproduction due to their prior use in asexual multiplication), and competitive disequilibrium between the two parental isolates, due to differential interaction dynamics with the host, for example, leading to an imbalance between mating types. A conceptual model based on these results suggests that sexual reproduction plays a key role in the evolution of pathogenicity traits, including virulence and aggressiveness. Ecological knowledge about the determinants of sexual reproduction in Z. tritici may, therefore, open up new perspectives for the management of other fungal foliar pathogens with dual modes of reproduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00248-018-1211-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!