Domestication and breeding for human-desired morphological traits can reduce population genetic diversity via founder events and artificial selection, resulting in inbreeding depression and genetic disorders. The ferret () was domesticated from European polecats (), transported to multiple continents, and has been artificially selected for several traits. The ferret is now a common pet, a laboratory model organism, and feral ferrets can impact native biodiversity. We hypothesized global ferret trade resulted in distinct international genetic clusters and that ferrets transported to other continents would have lower genetic diversity than ferrets from Europe because of extreme founder events and no hybridization with wild polecats or genetically diverse ferrets. To assess these hypotheses, we genotyped 765 ferrets at 31 microsatellites from 11 countries among the continents of North America, Europe, and Australia and estimated population structure and genetic diversity. Fifteen were genotyped for comparison. Our study indicated ferrets exhibit geographically distinct clusters and highlights the low genetic variation in certain countries. Australian and North American clusters have the lowest genetic diversities and highest inbreeding metrics whereas the United Kingdom (UK) cluster exhibited intermediate genetic diversity. Non-UK European ferrets had high genetic diversity, possibly a result of introgression with wild polecats. Notably, Hungarian ferrets had the highest genetic diversity and Hungary is the only country sampled with two wild polecat species. Our research has broad social, economic, and biomedical importance. Ferret owners and veterinarians should be made aware of potential inbreeding depression. Breeders in North America and Australia would benefit by incorporating genetically diverse ferrets from mainland Europe. Laboratories using ferrets as biomedical organisms should consider diversifying their genetic stock and incorporating genetic information into bioassays. These results also have forensic applications for conserving the genetics of wild polecat species and for identifying and managing sources of feral ferrets causing ecosystem damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5979634PMC
http://dx.doi.org/10.1111/eva.12565DOI Listing

Publication Analysis

Top Keywords

genetic diversity
24
genetic
13
founder events
12
ferrets
11
inbreeding depression
8
feral ferrets
8
wild polecats
8
genetically diverse
8
diverse ferrets
8
north america
8

Similar Publications

Detection, quantification, and characterization of airborne Aspergillus flavus within the corn canopy.

Mycotoxin Res

January 2025

ARS, National Biological Control Laboratory, 59 Lee Road, Stoneville, MS, 38776, USA.

Aflatoxin contamination of corn can occur when developing kernels are infected by the plant pathogen Aspergillus flavus. One route of infection is from airborne conidia. We executed a series of experiments within the corn canopy during two growing seasons and in two states to document the abundance and dynamics of the airborne A.

View Article and Find Full Text PDF

Genetic Mechanism Analysis Related to Cold Tolerance of Red Swamp Crayfish, Procambarus clarkii.

Mar Biotechnol (NY)

January 2025

Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China.

In China, the red swamp crayfish (Procambarus clarkii), a notorious invasive species, has become an important economic freshwater species. In order to compare the genetic diversity and population structure of crayfish from northern and southern China, we collected 60 crayfish individuals from 4 crayfish populations in northern China and 2 populations in southern China for sequencing using the 2b-RAD technique. Additionally, the whole genome sequence information obtained by 2b-RAD of 90 individuals from 2 populations in northern China and 7 populations in southern China were downloaded from NCBI.

View Article and Find Full Text PDF

Background: AML-M4Eo is a type of AML characterized by malignant proliferation of granulocyte and monocyte precursor cells accompanied by eosinophilia. Patients present as anemia, infection, bleeding, and tissue and organ infiltration. MICM classification makes the classification of AML more accurate and lays a foundation for the correct treatment and prognosis of AML.

View Article and Find Full Text PDF

Background: This study aimed to evaluate the efficacy of third-generation sequencing (TGS) and a thalassemia (Thal) gene diagnostic kit in identifying Thal gene mutations.

Methods: Blood samples (n = 119) with positive hematology screening results were tested using polymerase chain reaction (PCR)-based methods and TGS on the PacBio-Sequel-II-platform, respectively.

Results: Out of the 119 cases, 106 cases showed fully consistent results between the two methods, with TGS identified HBA1/2 and HBB gene mutations in 82 individuals.

View Article and Find Full Text PDF

Background: Familial hyperlipidemia (familial hypercholesterolemia, FH) is an autosomal genetic disorder. It includes type heterozygous familial hyperlipidemia (heterozygous familial hypercholesterolemia). HeFH is mainly caused by mutations in the LDLR, APOB, and PCSK9 genes and is characterized by elevated plasma low-density lipoprotein cholesterol levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!