The plant cell wall is known to be the first barrier against plant pathogens. Detailed information about sugarcane cell wall-associated defense responses to infection by the causal agent of smut, , is scarce. Herein, (immuno)histochemical analysis of two smut resistant and two susceptible sugarcane cultivars was conducted to understand host cell wall structural and compositional modifications in response to fungal infection. Results showed that the fungus grew on the surface and infected the outermost bud scale of both susceptible and resistant cultivars. The present findings also supported the existence of early (24 h after inoculation) and later (72-96 h after inoculation) inducible histopathological responses related to the cell wall modification in resistant cultivars. Lignin and phenolic compounds accumulated during early stages of infection. Later infection response was characterized by the formation of a protective barrier layer with lignin, cellulose and arabinoxylan in the cell walls. Overall, the results suggest possible induction of cell wall-modified responses in smut resistant cultivars to prevent initial entry of the fungus into the meristematic tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974332 | PMC |
http://dx.doi.org/10.3389/fpls.2018.00698 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Biology, Indiana University, Bloomington, IN 47405.
Transgenic expression of a double-stranded RNA in plants can induce silencing of homologous mRNAs in fungal pathogens. Although such host-induced gene silencing is well documented, the molecular mechanisms by which RNAs can move from the cytoplasm of plant cells across the plasma membrane of both the host cell and fungal cell are poorly understood. Indirect evidence suggests that this RNA transfer may occur at a very early stage of the infection process, prior to breach of the host cell wall, suggesting that silencing RNAs might be secreted onto leaf surfaces.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biology, The Pennsylvania State University, University Park, PA, United States of America.
Using maize plants expressing an apoplast targeted Aspergillus niger ferulic acid esterase (FAEA), with FAEA driven by a Lolium multiflorum senescence enhanced promoter (LmSee1), we extended measurements of FAEA activity to late-stage senescing plants and measured the stability of FAEA activity following stover storage. The impact of FAEA expression on cell wall hydroxycinnamic acid levels and arabinoxylan (AX) cross-links, and on the levels of cell wall sugars, acetyl bromide lignin and sugar release following saccharification by a cocktail of cellulases and xylanases, was assessed during plant development to full leaf senescence. These were determined in both individual internodes and in combined leaves and combined internodes of FAEA expressing and control partner plants.
View Article and Find Full Text PDFPLoS One
January 2025
Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée (ISFORT), Université du Québec en Outaouais (UQO), Ripon, Canada.
Forests face an escalating threat from the increasing frequency of extreme drought events driven by climate change. To address this challenge, it is crucial to understand how widely distributed species of economic or ecological importance may respond to drought stress. In this study, we examined the transcriptome of white spruce (Picea glauca (Moench) Voss) to identify key genes and metabolic pathways involved in the species' response to water stress.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India.
Medicinal plants often harbour various endophytic actinomycetia, which are well known for their potent antimicrobial properties and plant growth-promoting traits. In this study, we isolated an endophytic actinomycetia, A13, from the leaves of tea clone P312 from the MEG Tea Estate, Meghalaya, India. The isolate A13 was identified as Streptomyces sp.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
The impact of animal-based food production on climate change drives the development of plant-based alternatives. We demonstrate the use of colloidal thermogelation on a real nanoemulsion system to create structured gels that could be of interest for thermo-mechanical processing of next-generation plant-based food applications. We use a commercial pea protein isolate (PPI) without further purification to stabilize a 20 vol% peanut oil-in-water nanoemulsion at pH = 7 by high-pressure homogenization (HPH) and demonstrate the temperature induced gelation behavior of the nanoemulsion as a function of the HPH processing parameters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!