Cells of Matter- Models for Myotonic Dystrophy.

Front Neurol

Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France.

Published: May 2018

Myotonic dystrophy type 1 (DM1 also known as Steinert disease) is a multisystemic disorder mainly characterized by myotonia, progressive muscle weakness and wasting, cognitive impairments, and cardiac defects. This autosomal dominant disease is caused by the expression of nuclear retained RNAs containing pathologic expanded CUG repeats that alter the function of RNA-binding proteins in a tissue-specific manner, leading ultimately to neuromuscular dysfunction and clinical symptoms. Although considerable knowledge has been gathered on myotonic dystrophy since its first description, the development of novel relevant disease models remains of high importance to investigate pathophysiologic mechanisms and to assess new therapeutic approaches. In addition to animal models, cell cultures provide a unique resource for both fundamental and translational research. This review discusses how cellular models broke ground to decipher molecular basis of DM1 and describes currently available cell models, ranging from exogenous expression of the CTG tracts to variable patients' derived cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974047PMC
http://dx.doi.org/10.3389/fneur.2018.00361DOI Listing

Publication Analysis

Top Keywords

myotonic dystrophy
12
models
5
cells matter-
4
matter- models
4
models myotonic
4
dystrophy myotonic
4
dystrophy type
4
type dm1
4
dm1 steinert
4
steinert disease
4

Similar Publications

Objective: To analyze the results of nocturnal breathing parameters during sleep based on nocturnal pulse oximetry and to study of characteristics of external respiration in genetically confirmed patients with dystrophic myotonia (DM).

Material And Methods: The subjects of the study were patients with genetically confirmed DM types 1 and 2 who were hospitalized in the neurological departments of the Republican Scientific and Practical Center for Neurology and Neurosurgery. The clinical picture of the disease, comorbidities, sleep questionnaires, laboratory tests, overnight pulse oximetry and spirometry were performed and analyzed.

View Article and Find Full Text PDF

Expansion of nucleotide repeat sequences is associated with more than 40 human neuromuscular disorders. The different pathogenic mechanisms associated with the expression of nucleotide repeats are not well understood. We use a Caenorhabditis elegans model that expresses expanded CUG repeats only in cells of the body wall muscle and recapitulate muscle dysfunction and impaired organismal motility to identify the basis by which expression of RNA repeats is toxic to muscle function.

View Article and Find Full Text PDF

As adaptors, catalysts, guides, messengers, scaffolds and structural components, RNAs perform an impressive array of cellular regulatory functions often by recruiting RNA-binding proteins (RBPs) to form ribonucleoprotein complexes (RNPs). While this RNA-RBP interaction network allows precise RNP assembly and the subsequent structural dynamics required for normal functions, RNA motif mutations may trigger the formation of aberrant RNP structures that lead to cell dysfunction and disease. Here, we provide our perspective on one type of RNA motif mutation, RNA gain-of-function mutations associated with the abnormal expansion of short tandem repeats (STRs) that underlie multiple developmental and degenerative diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!