Purpose: Pathogenic variations in genes encoding aminoacyl-tRNA synthetases (ARSs) are increasingly associated with human disease. Clinical features of autosomal recessive ARS deficiencies appear very diverse and without apparent logic. We searched for common clinical patterns to improve disease recognition, insight into pathophysiology, and clinical care.

Methods: Symptoms were analyzed in all patients with recessive ARS deficiencies reported in literature, supplemented with unreported patients evaluated in our hospital.

Results: In literature, we identified 107 patients with AARS, DARS, GARS, HARS, IARS, KARS, LARS, MARS, RARS, SARS, VARS, YARS, and QARS deficiencies. Common symptoms (defined as present in ≥4/13 ARS deficiencies) included abnormalities of the central nervous system and/or senses (13/13), failure to thrive, gastrointestinal symptoms, dysmaturity, liver disease, and facial dysmorphisms. Deep phenotyping of 5 additional patients with unreported compound heterozygous pathogenic variations in IARS, LARS, KARS, and QARS extended the common phenotype with lung disease, hypoalbuminemia, anemia, and renal tubulopathy.

Conclusion: We propose a common clinical phenotype for recessive ARS deficiencies, resulting from insufficient aminoacylation activity to meet translational demand in specific organs or periods of life. Assuming residual ARS activity, adequate protein/amino acid supply seems essential instead of the traditional replacement of protein by glucose in patients with metabolic diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7091658PMC
http://dx.doi.org/10.1038/s41436-018-0048-yDOI Listing

Publication Analysis

Top Keywords

ars deficiencies
16
recessive ars
12
pathogenic variations
8
common clinical
8
deficiencies
6
common
5
ars
5
patients
5
aminoacyl-trna synthetase
4
synthetase deficiencies
4

Similar Publications

Article Synopsis
  • Artificial reefs (ARs) enhance marine ecosystems and promote sustainable use of marine resources by altering biological communities and fostering species succession.
  • Microbial communities are particularly affected by AR deployment, playing a key role in ecosystem health, stability, and nutrient cycling, while their changes in abundance, diversity, and distribution influence the overall community structure.
  • The article highlights gaps in current research on microbial community risks in AR environments, offering insights into the intricate relationships between microorganisms and larger marine organisms during the development of marine ranches.
View Article and Find Full Text PDF
Article Synopsis
  • Multiple Sclerosis (MS) patients show significantly higher concentrations of heavy metals like arsenic, nickel, manganese, and zinc in their stool compared to healthy individuals, while levels of iron, lead, titanium, and tin are notably lower.
  • The study also reveals alterations in the gut microbiome of MS patients, with increased abundance of certain bacterial families indicative of potential changes associated with the disease.
  • The research highlights a novel approach by combining heavy metal measurement and gut microbiome analysis, suggesting new insights into the disease's pathogenesis and possible therapeutic strategies.
View Article and Find Full Text PDF

Acute MeCP2 loss in adult mice reveals transcriptional and chromatin changes that precede neurological dysfunction and inform pathogenesis.

Neuron

December 2024

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:

Mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene cause Rett syndrome, a severe childhood neurological disorder. MeCP2 is a well-established transcriptional repressor, yet upon its loss, hundreds of genes are dysregulated in both directions. To understand what drives such dysregulation, we deleted Mecp2 in adult mice, circumventing developmental contributions and secondary pathogenesis.

View Article and Find Full Text PDF

The canonical arsRBC genes of the ars1 operon in Pseudomonas putida KT2440, which confer tolerance to arsenate and arsenite, are followed by a series of additional ORFs culminating in phoN1. The phoN1 gene encodes an acetyltransferase that imparts resistance to the glutamine synthetase inhibitor herbicide phosphinothricin (PPT). The co-expression of phoN1 and ars genes in response to environmental arsenic, along with the physiological effects, was analysed through transcriptomics of cells exposed to the oxyanion and phenotypic characterization of P.

View Article and Find Full Text PDF

The impact of primary immunodeficiency on the severity of chronic rhinosinusitis.

Am J Otolaryngol

December 2024

Department of Otolaryngology-Head & Neck Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA. Electronic address:

Article Synopsis
  • The study investigates the impact of primary IgA and/or IgG immunodeficiencies on the severity of chronic rhinosinusitis (CRS) among patients at a Boston medical center.
  • Results indicate that patients with these immunodeficiencies have a higher prevalence of CRS (12%) compared to those with normal levels (5%).
  • However, the immunodeficient group does not show statistically significant differences in acute rhinosinusitis episodes or the need for surgical interventions compared to the normal group.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!