Neutrophil extracellular traps prevent HIV infection in the female genital tract.

Mucosal Immunol

Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, USA.

Published: September 2018

Women acquire human immunodeficiency virus (HIV) mainly through sexual intercourse. However, low transmission rates per sexual act indicate that local immune mechanisms contribute to HIV prevention. Neutrophils represent 10-20% of the genital immune cells in healthy women. Neutrophils mediate mucosal protection against bacterial and fungal pathogens through different mechanisms, including the release of neutrophil extracellular traps (NETs). NETs are DNA fragments associated with antimicrobial granular proteins. Despite neutrophil abundance and central contributions to innate immunity in the genital tract, their role in protection against HIV acquisition is unknown. We found that stimulation of human genital neutrophils with HIV viral-like particles (HIV-VLPs) induced NET release within minutes of viral exposure, through reactive oxygen species-independent mechanisms that resulted in immediate entrapment of HIV-VLPs. Incubation of infectious HIV with pre-formed genital NETs prevented infection of susceptible cells through irreversible viral inactivation. HIV inactivation by NETs from genital neutrophils could represent a previously unrecognized form of mucosal protection against HIV acquisition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6162173PMC
http://dx.doi.org/10.1038/s41385-018-0045-0DOI Listing

Publication Analysis

Top Keywords

neutrophil extracellular
8
extracellular traps
8
hiv
8
genital tract
8
neutrophils represent
8
mucosal protection
8
protection hiv
8
hiv acquisition
8
genital neutrophils
8
genital
6

Similar Publications

To illustrate the potential of mesenchymal stem cell-derived exosomes (MSC-Exos) in mitigating septic lung injury by reducing the excessive formation of neutrophil extracellular traps (NETs), a mouse model of septic lung injury was induced through cecal ligation and puncture (CLP). The mice received intraperitoneal injections of MSC-Exos. Post injection, pathological alterations of the lung tissue were evaluated through HE staining, and the levels of inflammatory markers in each mouse group at various time points were assessed using ELISA kits.

View Article and Find Full Text PDF

Neutrophil elastase (NE) is released by activated neutrophils during an inflammatory response and exerts proteolytic activity on elastin and other extracellular matrix components. This protease is rapidly inhibited by the plasma serine protease inhibitor alpha-1-antitrypsin (AAT), and the importance of this protective activity on lung tissue is highlighted by the development of early onset emphysema in individuals with AAT deficiency. As a serpin, AAT presents a surface-exposed reactive centre loop (RCL) whose sequence mirrors the target protease specificity.

View Article and Find Full Text PDF

Neutrophils are peripheral blood-circulating leukocytes that play a pivotal role in host defense against bacterial pathogens which upon activation, they release web-like chromatin structures called neutrophil extracellular traps (NETs). Here, we analyzed and compared the importance of myeloid differentiation factor 88 (MYD88), peptidyl arginine deiminase 4 (PAD4), and gasdermin D (GSDMD) for NET formation in vivo following sepsis and neutrophilia challenge. Injection of lipopolysaccharide (LPS)/E.

View Article and Find Full Text PDF

Modification of polylactic acid (PLA) is a promising strategy for the next generation of bioresorbable vascular stent biomaterials. With this focus, FeMOFs nanoparticles was incorporated in PLA, and then post loading of carbon monoxide (CO) was performed by pressurization. It showed FeMOFs incorporation increased hydrophilicity of the surface and CO loading, and CO release was sustained at least for 3 days.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs) were detected in blood samples and in cellular deposits of oxygenator membranes during extracorporeal membrane oxygenation (ECMO) therapy and may be responsible for thrombogenesis. The aim was to evaluate the effect of the base material of gas fiber (GF, polymethylpentene) and heat exchange (HE) membranes and different antithrombogenic coatings on isolated granulocytes from healthy volunteers under static culture conditions. Contact of granulocytes with membranes from different ECMO oxygenators (with different surface coatings) and uncoated-GFs allowed detection of adherent cells and NETotic nuclear structures (normal, swollen, ruptured) using nuclear staining.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!