Previous studies utilizing the fluorescence of propanolol as a probe for the beta-adrenergic receptor showed that this receptor is motionally constrained. To further study the beta-adrenergic receptor in situ we have reinserted rhodamine-labeled beta-receptors into cell membranes. This report presents documentation of their insertion and physiologic viability. Beta-receptors were purified by affinity chromatography (10,000-fold), then fluorescently labeled with tetramethyl rhodamine isothiocyanate, repurified (55,000-fold) and incubated with rat pancreatic islet cells. The binding of 3H-dihydroalprenolol by these cells was increased from a Bmax of 168 +/- 2 to 309 +/- 20 fmol/mg protein with no change in Kd. Various treatments which remove peripheral membrane proteins, e.g. NaOH, lithium diiodosalicylate, and trypsinization, did not alter binding by the cells with inserted receptors indicating that the receptors inserted into cell membranes. In islet cells treated with Koshland's reagent I, beta-adrenergic binding was completely abolished, but following incubation with isolated beta-receptors, the cells bound beta-adrenergic radioligand with a Bmax of 100 fmol/mg protein, indicating functionality on the part of the inserted receptors. Furthermore, insertion of isolated receptors into frog erythrocytes resulted in increased production of cAMP in response to added isoproterenol. In pancreatic islet cells, incubation with labeled receptors caused the fluorescence to shift in wavelength with increased intensity indicating a shift from an aqueous to a lipid environment, probably into the membrane. Using fluorescence (P), it was found that the inserted receptors became motionally constrained to a P of 0.38 (limiting Po = 0.42) during the first 15 min, remaining so for at least 2 hr. Colchicine (5 micrograms/ml) caused a decrease in P to 0.18 indicating release of constraint. Isoproterenol (10(-5)M) caused a rapid decrease to P = 0.15. This effect was blocked by propranolol. Propranolol itself (10(-5) M) had no effect. These results indicate that the labeled receptors rapidly insert into cell membranes and also support the view that agonist activation of the receptor causes an increase in receptor mobility, presumably due to release of constraint from cytoskeleton elements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF01872208 | DOI Listing |
Curr Mol Med
January 2025
LiShizhen College of Traditional Chinese Medicine, Huanggang Normal University, Hubei, Huanggang 438000, China.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) encompass various etiologies and are distinguished by the onset of acute pulmonary inflammation and heightened permeability of the pulmonary vasculature, often leading to substantial morbidity and frequent mortality. There is a scarcity of viable approaches for treating effectively. In recent decades, acupuncture has been proven to be antiinflammatory.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China.
The structural disruption of intestinal barrier and excessive reactive oxygen/nitrogen species (RONS) generation are two intertwined factors that drive the occurrence and development of ulcerative colitis (UC). Synchronously restoring the intestinal barrier and mitigating excess RONS is a promising strategy for UC management, but its treatment outcomes are still hindered by low drug accumulation and retention in colonic lesions. Inspired by intestine colonizing bacterium, we developed a mucoadhesive probiotic -mimic entinostat-loaded hollow mesopores prussian blue (HMPB) nanotherapeutic (AM@HMPB@E) for UC-targeted therapy via repairing intestinal barrier and scavenging RONS.
View Article and Find Full Text PDFACS Nano
January 2025
Medical Research Center, The First Affiliated Hospital of Zhengzhou University, The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
Tumor-specific T cells play a vital role in potent antitumor immunity. However, their efficacy is severely affected by the spatiotemporal orchestration of antigen-presentation as well as the innate immune response in dendritic cells (DCs). Herein, we develop a minimalist nanovaccine that exploits a dual immunofunctional polymeric nanoplatform (DIPNP) to encapsulate ovalbumin (OVA) via electrostatic interaction when the nanocarrier serves as both STING agonist and immune adjuvant in DCs.
View Article and Find Full Text PDFFront Parasitol
March 2024
Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico.
The retromer is a highly conserved eukaryotic complex formed by the cargo selective complex (CSC) and the sorting nexin (SNX) dimer subcomplexes. Its function is protein recycling and recovery from the endosomes to conduct the target molecules to the trans-Golgi network or the plasma membrane. The protozoan responsible for human amoebiasis, , exhibits an active membrane movement and voracious phagocytosis, events in which the retromer may be fully involved.
View Article and Find Full Text PDFStem Cells Cloning
January 2025
Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia.
Objective: Chronic wounds are a common clinical problem that necessitate the exploration of novel regenerative therapies. We report a method to investigate the in vitro wound healing capacity of an innovative biomaterial, which is based on amniotic membrane-derived stem cells (AMSCs) embedded in an alginate hydrogel matrix. The aim of this study was to prepare an sodium alginate-based hydrogel, cross-linked calcium chloride (CaCl with the active ingredient AMSC (AMSC/Alg-H) and to evaluate its in vitro effectiveness for wound closure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!