Previous studies utilizing the fluorescence of propanolol as a probe for the beta-adrenergic receptor showed that this receptor is motionally constrained. To further study the beta-adrenergic receptor in situ we have reinserted rhodamine-labeled beta-receptors into cell membranes. This report presents documentation of their insertion and physiologic viability. Beta-receptors were purified by affinity chromatography (10,000-fold), then fluorescently labeled with tetramethyl rhodamine isothiocyanate, repurified (55,000-fold) and incubated with rat pancreatic islet cells. The binding of 3H-dihydroalprenolol by these cells was increased from a Bmax of 168 +/- 2 to 309 +/- 20 fmol/mg protein with no change in Kd. Various treatments which remove peripheral membrane proteins, e.g. NaOH, lithium diiodosalicylate, and trypsinization, did not alter binding by the cells with inserted receptors indicating that the receptors inserted into cell membranes. In islet cells treated with Koshland's reagent I, beta-adrenergic binding was completely abolished, but following incubation with isolated beta-receptors, the cells bound beta-adrenergic radioligand with a Bmax of 100 fmol/mg protein, indicating functionality on the part of the inserted receptors. Furthermore, insertion of isolated receptors into frog erythrocytes resulted in increased production of cAMP in response to added isoproterenol. In pancreatic islet cells, incubation with labeled receptors caused the fluorescence to shift in wavelength with increased intensity indicating a shift from an aqueous to a lipid environment, probably into the membrane. Using fluorescence (P), it was found that the inserted receptors became motionally constrained to a P of 0.38 (limiting Po = 0.42) during the first 15 min, remaining so for at least 2 hr. Colchicine (5 micrograms/ml) caused a decrease in P to 0.18 indicating release of constraint. Isoproterenol (10(-5)M) caused a rapid decrease to P = 0.15. This effect was blocked by propranolol. Propranolol itself (10(-5) M) had no effect. These results indicate that the labeled receptors rapidly insert into cell membranes and also support the view that agonist activation of the receptor causes an increase in receptor mobility, presumably due to release of constraint from cytoskeleton elements.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01872208DOI Listing

Publication Analysis

Top Keywords

cell membranes
16
islet cells
12
inserted receptors
12
receptors
8
beta-adrenergic receptor
8
motionally constrained
8
pancreatic islet
8
fmol/mg protein
8
labeled receptors
8
release constraint
8

Similar Publications

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) encompass various etiologies and are distinguished by the onset of acute pulmonary inflammation and heightened permeability of the pulmonary vasculature, often leading to substantial morbidity and frequent mortality. There is a scarcity of viable approaches for treating effectively. In recent decades, acupuncture has been proven to be antiinflammatory.

View Article and Find Full Text PDF

Oral Biomimetic Nanotherapeutics for Ulcerative Colitis Targeted Treatment by Repairing Intestinal Epithelial Barrier and Restoring Redox Homeostasis.

ACS Appl Mater Interfaces

January 2025

Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China.

The structural disruption of intestinal barrier and excessive reactive oxygen/nitrogen species (RONS) generation are two intertwined factors that drive the occurrence and development of ulcerative colitis (UC). Synchronously restoring the intestinal barrier and mitigating excess RONS is a promising strategy for UC management, but its treatment outcomes are still hindered by low drug accumulation and retention in colonic lesions. Inspired by intestine colonizing bacterium, we developed a mucoadhesive probiotic -mimic entinostat-loaded hollow mesopores prussian blue (HMPB) nanotherapeutic (AM@HMPB@E) for UC-targeted therapy via repairing intestinal barrier and scavenging RONS.

View Article and Find Full Text PDF

Personalized Nanovaccine Based on STING-Activating Nanocarrier for Robust Cancer Immunotherapy.

ACS Nano

January 2025

Medical Research Center, The First Affiliated Hospital of Zhengzhou University, The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.

Tumor-specific T cells play a vital role in potent antitumor immunity. However, their efficacy is severely affected by the spatiotemporal orchestration of antigen-presentation as well as the innate immune response in dendritic cells (DCs). Herein, we develop a minimalist nanovaccine that exploits a dual immunofunctional polymeric nanoplatform (DIPNP) to encapsulate ovalbumin (OVA) via electrostatic interaction when the nanocarrier serves as both STING agonist and immune adjuvant in DCs.

View Article and Find Full Text PDF

EhVps35, a retromer component, is involved in the recycling of the EhADH and Gal/GalNac virulent proteins of .

Front Parasitol

March 2024

Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico.

The retromer is a highly conserved eukaryotic complex formed by the cargo selective complex (CSC) and the sorting nexin (SNX) dimer subcomplexes. Its function is protein recycling and recovery from the endosomes to conduct the target molecules to the trans-Golgi network or the plasma membrane. The protozoan responsible for human amoebiasis, , exhibits an active membrane movement and voracious phagocytosis, events in which the retromer may be fully involved.

View Article and Find Full Text PDF

Alginate-Based Hydrogels with Amniotic Membrane Stem Cells for Wound Dressing Application.

Stem Cells Cloning

January 2025

Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia.

Objective: Chronic wounds are a common clinical problem that necessitate the exploration of novel regenerative therapies. We report a method to investigate the in vitro wound healing capacity of an innovative biomaterial, which is based on amniotic membrane-derived stem cells (AMSCs) embedded in an alginate hydrogel matrix. The aim of this study was to prepare an sodium alginate-based hydrogel, cross-linked calcium chloride (CaCl with the active ingredient AMSC (AMSC/Alg-H) and to evaluate its in vitro effectiveness for wound closure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!