Mesoporous carbon for efficient removal of microcystin-LR in drinking water sources, Nak-Dong River, South Korea: Application to a field-scale drinking water treatment plant.

Chemosphere

Center for Water Resource Cycle, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea; KU-KIST Green School, Graduate School of Energy and Environment, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea. Electronic address:

Published: February 2018

Microcystin-LR (MC-LR) is a growing issue as it is toxic and difficult to remove in drinking water treatment plants (DWTPs). Mesoporous carbon (MC) is evaluated as an alternative adsorbent for MC-LR removal and compared with three widely-used powdered activated carbons (PACs). MC was more favorable for MC-LR removal than PACs. MC-LR adsorption on MC was a rapid process (k = 1.02  ×  10 g/μg/min) that completed within 15 min, while adsorption on PACs took 60 min. The maximum adsorption capacity of MC-LR was 18,008 μg/g (MC), which was higher than that of the PACs. Two mechanisms were associated with adsorption: the small hydro-dynamic diameter of MC in an aqueous solution increased the instantaneous attraction of MC-LR to its surface, and the numerous mesopores enhanced pore diffusion. The MC could remove MC-LR to meet the drinking water guidance level (1 μg/L) from an the MC-LR concentration range of 5-20 μg/L in drinking water sources, and 10 min of treatment was sufficient to meet this level (MC dose = 20 mg/L). The field-scale DWTP was operated by adding 1 or 5 mg/L MC to the mixing basin, and 49.49% and 74.50% of MC-LR was removed, respectively. Geosmin and 2-methylisoborneol were slightly reduced when 5 mg/L of MC was applied.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2017.11.092DOI Listing

Publication Analysis

Top Keywords

drinking water
20
mc-lr
9
mesoporous carbon
8
water sources
8
water treatment
8
mc-lr removal
8
drinking
5
water
5
carbon efficient
4
efficient removal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!