Sam50 Regulates PINK1-Parkin-Mediated Mitophagy by Controlling PINK1 Stability and Mitochondrial Morphology.

Cell Rep

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China. Electronic address:

Published: June 2018

PINK1 and Parkin mediate mitophagy, the cellular process that clears dysfunctional mitochondria. Mitophagy is regulated by mitochondrial dynamics, but the molecules linking these two processes remain poorly understood. Here, we show that Sam50, the core component of the sorting and assembly machinery (SAM), is a critical regulator of mitochondrial dynamics and PINK1-Parkin-mediated mitophagy. In response to Sam50 depletion, normal tubular mitochondria are first fragmented and subsequently merged into large spheres. Sam50 interacts with PINK1 to facilitate its processing and degradation. Depletion of Sam50 results in PINK1 accumulation, Parkin recruitment, and mitophagy. Interestingly, Sam50 deficiency induces a piecemeal mode of mitophagy that eliminates mitochondria "bit by bit" but spares mtDNA. In C. elegans, the Sam50 homolog gop-3 is required for the maintenance of mitochondrial morphology and mass. Our findings reveal that Sam50 directly links mitochondrial dynamics and mitophagy and that Sam50 depletion induces elimination of mitochondria without affecting mtDNA content.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2018.05.015DOI Listing

Publication Analysis

Top Keywords

mitochondrial dynamics
12
sam50
9
pink1-parkin-mediated mitophagy
8
mitochondrial morphology
8
sam50 depletion
8
mitophagy
7
mitochondrial
5
sam50 regulates
4
regulates pink1-parkin-mediated
4
mitophagy controlling
4

Similar Publications

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Mitochondrial Dysfunction in HFpEF: Potential Interventions Through Exercise.

J Cardiovasc Transl Res

January 2025

Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.

HFpEF is a prevalent and complex type of heart failure. The concurrent presence of conditions such as obesity, hypertension, hyperglycemia, and hyperlipidemia significantly increase the risk of developing HFpEF. Mitochondria, often referred to as the powerhouses of the cell, are crucial in maintaining cellular functions, including ATP production, intracellular Ca regulation, reactive oxygen species generation and clearance, and the regulation of apoptosis.

View Article and Find Full Text PDF

Constitutive mitochondrial dynamics ensure quality control and metabolic fitness of cells, and their dysregulation has been implicated in various human diseases. The large GTPase Dynamin-related protein 1 (Drp1) is intimately involved in mediating constitutive mitochondrial fission and has been implicated in mitochondrial cell death pathways. During ferroptosis, a recently identified type of regulated necrosis driven by excessive lipid peroxidation, mitochondrial fragmentation has been observed.

View Article and Find Full Text PDF

The 40S ribosomal subunit recycling pathway is an integral link in the cellular quality control network, occurring after translational errors have been corrected by the ribosome-associated quality control (RQC) machinery. Despite our understanding of its role, the impact of translation quality control on cellular metabolism remains poorly understood. Here, we reveal a conserved role of the 40S ribosomal subunit recycling (USP10-G3BP1) complex in regulating mitochondrial dynamics and function.

View Article and Find Full Text PDF

Mitochondrial fission and fusion in neurodegenerative diseases:Ca signalling.

Mol Cell Neurosci

January 2025

Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China. Electronic address:

Neurodegenerative diseases (NDs) are a group of disorders characterized by the progressive loss of neuronal structure and function. The pathogenesis is intricate and involves a network of interactions among multiple causes and systems. Mitochondria and Ca signaling have long been considered to play important roles in the development of various NDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!