The recent surge in spectroscopic Single-Molecule Localization Microscopy (sSMLM) offers exciting new capabilities for combining single molecule imaging and spectroscopic analysis. Through the synergistic integration of super-resolution optical microscopy and single-molecule spectroscopy, sSMLM offers combined strengths from both fields. By capturing the full spectra of single molecule fluorescent emissions, sSMLM can distinguish minute spectroscopic variations from individual fluorescent molecules while preserving nanoscopic spatial localization precision. It can significantly extend the coding space for multi-molecule super-resolution imaging. Furthermore, it has the potential to detect spectroscopic variations in fluorescence emission associated with molecular interactions, which further enables probing local chemical and biochemical inhomogeneities of the nano-environments. In this review, we seek to explain the working principle of sSMLM technologies and the status of sSMLM techniques towards new super-resolution imaging applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6635922 | PMC |
http://dx.doi.org/10.1016/j.biocel.2018.06.002 | DOI Listing |
Chem Biodivers
January 2025
SRM Institute of Science and Technology - NCR Campus, chemistry, Department of Chemistry, SRM Institute of Science and Technology, Delhi NCR Camp, India, 241405, Modinagar, INDIA.
This review paper provides an inclusive overview of the intricate interactions amid ionic liquids (ILs) and essential biomacromolecules, mainly Hemoglobin (Hb), Bovine Serum Albumin (BSA), Human Serum Albumin (HSA), and Calf Thymus-DNA (CT-DNA). ILs have recently become a topic of great attention because of their inimitable physicochemical properties and potential uses in different fields. The review systematically explores the binding mechanisms, thermodynamics, and structural changes induced by ILs on Hb, BSA, HSA, and CT-DNA using spectroscopic, thermodynamic, and computational techniques.
View Article and Find Full Text PDFEur J Neurol
February 2025
Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.
Objective: Disorders of arousal (DoA) are characterized by an intermediate state between wakefulness and deep sleep, leading to incomplete awakenings from NREM sleep. Multimodal studies have shown subtle neurophysiologic alterations even during wakefulness in DoA. The aim of this study was to explore the brain functional connectivity in DoA and the metabolic profile of the anterior and posterior cingulate cortex, given its pivotal role in cognitive and emotional processing.
View Article and Find Full Text PDFInd Eng Chem Res
January 2025
Department of Chemistry, Physics, and Materials Science, Fayetteville State University, Fayetteville, North Carolina 28301, United States.
An efficient Suzuki cross-coupling reaction under continuous flow conditions was developed utilizing an immobilized solid supported catalyst consisting of bimetallic nickel-palladium nanoparticles (Ni-Pd/MWCNTs). In this process, the reactants can be continuously pumped into a catalyst bed at a high flow rate of 0.6 mL/min and the temperature of 130 °C while the Suzuki products are recovered in high steady-state yields for prolonged continuous processing.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand.
Our phytochemical investigation of the roots of led to the isolation of two new lanostane triterpenes, 3-acetylpolycarpol () and 15-acetylpolycarpol (), as well as 15 known compounds (-). The structures of the isolated compounds were elucidated by an analysis of spectroscopic data. Compounds - were tested against nonsmall cell lung cancer cells (A549) and human cervical carcinoma cells (HeLa) using an MTT assay.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Department of Mechanical Engineering, Yeungnam University Gyeongsan-si 38451 Gyeongbuk Republic of Korea
In this study, dye/polymer matrix-stabilized β-FeOOH nanomaterials were fabricated for therapeutic applications. Rh-B/F127@β-FeOOH nanomaterials were synthesized using two different methods: co-precipitation (CoP) and hydrothermal (HT) methods. The as-synthesized nanoparticles were characterized using various spectroscopic techniques, including FT-IR, UV-Vis, PL, XRD, HR-TEM, and XPS analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!