Magnetic FeO@MCM-41 core-shell nanoparticles functionalized with thiol silane for efficient l-asparaginase immobilization.

Artif Cells Nanomed Biotechnol

a Department of Chemistry, Faculty of Science & Arts , Inonu University, Malatya , Turkey.

Published: June 2019

l-Asparaginase (l-ASNase) is a vital enzyme for medical treatment and food industry. Here, we assessed the use of FeO@Mobil Composition of Matter No. 41 (MCM-41) magnetic nanoparticles as carrier matrix for l-ASNase immobilization. In addition, surface of FeO@MCM-41 magnetic nanoparticles was functionalized with 3-mercaptopropyltrimethoxysilane (MPTMS) to enhance stability of l-ASNase. The chemical structure, thermal properties, magnetic profile and morphology of the thiol-functionalized FeO@MCM-41 magnetic nanoparticles were characterized with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential thermal analysis (DTA), differential scanning calorimetry (DSC), vibrating sample magnetometer (VSM), scanning electron microscope (SEM), energy dispersive X-ray (EDX) spectroscopy and zeta-potential measurement. l-ASNase was covalently immobilized onto the thiol-functionalized FeO@MCM-41 magnetic nanoparticles. The properties of the immobilized enzyme, including optimum pH, temperature, kinetic parameters, thermal stability, reusability and storage stability were investigated and compared to free one. Immobilized enzyme was found to be stable over a wide range of pH and temperature range than free enzyme. The immobilized l-ASNase also showed higher thermal stability after 180 min incubation at 50 °C. The immobilized enzyme still retained 63% of its original activity after 16 times of reuse. The Km value for the immobilized enzyme was 1.15-fold lower than the free enzyme, which indicates increased affinity for the substrate. Additionally, the immobilized enzyme was active over 65% and 53% after 30 days of storage at 4 °C and room temperature (∼25 °C), respectively. Thereby, the results confirmed that thiol-functionalized FeO@MCM-41 magnetic nanoparticles had high efficiency for l-ASNase immobilization and improved stability of L-ASNase.

Download full-text PDF

Source
http://dx.doi.org/10.1080/21691401.2018.1478422DOI Listing

Publication Analysis

Top Keywords

magnetic nanoparticles
20
immobilized enzyme
20
feo@mcm-41 magnetic
16
thiol-functionalized feo@mcm-41
12
nanoparticles functionalized
8
enzyme
8
l-asnase immobilization
8
stability l-asnase
8
thermal stability
8
free enzyme
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!