Lithium-sulfur (Li-S) batteries are probably the most promising candidates for the next-generation batteries owing to their high energy density. However, Li-S batteries face severe technical problems where the dissolution of intermediate polysulfides is the biggest problem because it leads to the degradation of the cathode and the lithium anode, and finally the fast capacity decay. Compared with the composites of elemental sulfur and other matrices, sulfur-containing polymers (SCPs) have strong chemical bonds to sulfur and therefore show low dissolution of polysulfides. Unfortunately, most SCPs have very low electron conductivity and their morphologies can hardly be controlled, which undoubtedly depress the battery performances of SCPs. To overcome these two weaknesses of SCPs, a new strategy was developed for preparing SCP composites with enhanced conductivity and desired morphologies. With this strategy, macroporous SCP composites were successfully prepared from hierarchical porous carbon. The composites displayed discharge/charge capacities up to 1218/1139, 949/922, and 796/785 mA h g at the current rates of 5, 10, and 15 C, respectively. Considering the universality of this strategy and the numerous morphologies of carbon materials, this strategy opens many opportunities for making carbon/SCP composites with novel morphologies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b03611DOI Listing

Publication Analysis

Top Keywords

desired morphologies
8
li-s batteries
8
scp composites
8
composites
6
morphologies
5
universal strategy
4
strategy prepare
4
prepare sulfur-containing
4
sulfur-containing polymer
4
polymer composites
4

Similar Publications

Hematite (α-FeO) nanoparticles have been synthesized from waste source of iron which contains a prominent amount of iron (93.2 %) and investigated the effect of low temperature calcination. The two-step synthesis method involved preparing ferrous sulfate through acid leaching process followed by oxidation and calcination at temperatures ranging from 200 to 400 °C to produce the desired α-FeO in nano form.

View Article and Find Full Text PDF

Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.

View Article and Find Full Text PDF

The rapid development of delivery systems for cosmetics has revealed two critical challenges in the field: enhancing the solubility of active ingredients and ensuring the stability of natural materials used in cosmetics. Nanoemulsion technology has emerged as an indispensable solution for addressing these challenges, not only enhancing the stability of cosmetics but also improving the solubility of pharmaceuticals and active ingredients with poor solubility. Nanoemulsion formulations have reinforced stability and amended the bioavailability of hydrophobic drugs.

View Article and Find Full Text PDF

A multicenter study on TROP2 as a potential targeted therapy for extramammary Paget disease in Japan.

Sci Rep

January 2025

Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.

Extramammary Paget disease (EMPD) is a rare skin cancer that typically occurs in the anogenital area of older people. Since efficacy of treatments for metastatic or unresectable EMPD remains poor, development of a novel therapeutic approach is strongly desired. However, the lack of EMPD models has hampered investigation of EMPD.

View Article and Find Full Text PDF

Large-Area Transfer of Nanometer-Thin C Films.

ACS Nano

January 2025

School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.

Fullerenes, with well-defined molecular structures and high scalability, hold promise as fundamental building blocks for creating a variety of carbon materials. The fabrication and transfer of large-area films with precisely controlled thicknesses and morphologies on desired surfaces are crucial for designing and developing fullerene-based materials and devices. In this work, we present strategies for solid-state transferring C molecular nanometer-thin films, with dimensions of centimeters in lateral size and thicknesses controlled in the range of 1-20 nm, onto various substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!