Proton transfer is central to the understanding of chemical processes. More so in addition reactions of the type NuH + E → Nu-EH taking place under solvent-free and catalyst-free conditions. Herein we show that the addition of alcohols or amines (the NuH component) to imine derivatives (the E component), in 1 : 1 ratio, under solvent-free and catalyst-free conditions, are efficient methods to access N,O and N,N-acetal derivatives. In addition, computational studies reveal that they are catalyzed reactions involving two or even three NuH molecules operating in a cooperative manner as H-bonded NuH(NuH)nNuH associates (many body effects) in the transition state through a concerted proton shuttling mechanism (addition of alcohols) or stepwise proton shuttling mechanism (addition of amines), thereby facilitating the key proton transfer step.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8ob01007b | DOI Listing |
Biosci Rep
December 2024
Universidade Nova de Lisboa Instituto de Tecnologia Quimica e Biologica Antonio Xavier, Oeiras e São Julião da Barra, Portugal.
Multicentre redox proteins participate in diverse metabolic processes, such as redox shuttling, multielectron catalysis, or long-distance electron conduction. The detail in which these processes can be analysed depends on the capacity of experimental methods to discriminate the multiple microstates that can be populated while the protein changes from the fully reduced to the fully oxidized state. The population of each state depends on the redox potential of the individual centres and on the magnitude of the interactions between the individual redox centres with their neighbours.
View Article and Find Full Text PDFChembiochem
December 2024
Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, D-06120, Halle (Saale), Germany.
Histidine is a key amino-acid residues in proteins that can exist in three different protonation states: two different neutral tautomeric forms and a protonated, positively charged one. It can act as both donor and acceptor of hydrogen bonds, coordinate metal ions, and engage in acid/base catalysis. Human Carbonic Anhydrase II (HCA II) is a pivotal enzyme catalyzing the reversible hydration of carbon dioxide.
View Article and Find Full Text PDFFEBS J
December 2024
The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
Carbonic anhydrases (CAs) are ideal catalysts for carbon dioxide sequestration in efforts to alleviate climate change. Here, we report the characterisation of three α-CAs that originate from the thermophilic bacteria Persephonella hydrogeniphila (PhyCA), Persephonella atlantica (PaCA), and Persephonella sp. KM09-Lau-8 (PlauCA) isolated from hydrothermal vents.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
Inorg Chem
December 2024
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong (SAR), China.
Direct utilization of solar energy by semiconductor nanocrystals for chemical transformations via photocatalysis has recently drawn a great deal of attention. While most photocatalytic reactions are mediated through photoredox events, the ultimate reaction scalability relies on the use of sacrificial agents. The imbalanced population of photogenerated electrons and holes often leads to catalyst degradation through photocorrosion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!