We undertake a theoretical study of the role of spin orbit interactions in a silicon double quantum dot. We propose that an accurate estimate of the strength of this interaction can be obtained through the study of the return probability of the double occupation singlet state in a magnetic field, as the system is gated dynamically across the relevant states in the low energy two-electron manifold. Landau-Zener type of processes involving appropriate control of voltage pulses across neighboring avoided crossings in the energy spectrum of the system are utilized to explore the system dynamics. Our description takes into account Zeeman splitting, intervalley mixing and spin-orbit interaction present in the structure. Using a density matrix equation of motion approach, we carry out numerical calculations for the return probability of the double occupation singlet state. The analysis in terms of Landau-Zener theory allows the determination of the spin-orbit coupling strength for different Zeeman splitting regimes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/aacabc | DOI Listing |
J Phys Chem A
January 2025
Astrophysik/I. Physikalisches Institut, Universität zu Köln, Köln 50937, Germany.
The methoxy radical, CHO, has long been studied experimentally and theoretically by spectroscopists because it displays a weak Jahn-Teller effect in its electronic ground state, combined with a strong spin-orbit interaction. In this work, we report an extension of the measurement of the pure rotational spectrum of the radical in its vibrational ground state in the submillimeter-wave region (350-860 GHz). CHO was produced by H-abstraction from methanol using F atoms, and its spectrum was probed in absorption using an association of source-frequency modulation and Zeeman modulation spectroscopy.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy Northwestern University, Evanston, Illinois 60208-3113, USA.
Organic donor-acceptor (D-A) cocrystals are gaining attention for their potential applications in optoelectronic devices. This study explores the dynamics of charge transfer (CT) and triplet exciton formation in various D-A cocrystals. By examining a series of D-A cocrystals composed of coronene (COR), peri-xanthenoxanthene (PXX), and perylene (PER) donors paired with N,N-bis(3'-pentyl)perylene-3,4:9,10-bis(dicarboximide) (PDI), naphthalene-1,4:5,8-tetracarboxy-dianhydride (NDA), or pyrene-4,5,9,10-tetraone (PTO) acceptors, using transient absorption microscopy and time-resolved electron paramagnetic resonance spectroscopy, we find that the strength of the CT interaction influences the nature and yield of triplet excitons produced by CT state recombination.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
The strategy of designing efficient room-temperature phosphorescence (RTP) emitters based on hydrogen bond interactions has attracted great attention in recent years. However, the regulation mechanism of the hydrogen bond on the RTP property remains unclear, and corresponding theoretical investigations are highly desired. Herein, the structure-property relationship and the internal mechanism of the hydrogen bond effect in regulating the RTP property are studied through the combination of quantum mechanics and molecular mechanics methods (QM/MM) coupled with the thermal vibration correlation function method.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
Searching for single-molecule magnets (SMM) with large effective blocking barriers, long relaxation times, and high magnetic blocking temperatures is vitally important not only for the fundamental research of magnetism at the molecular level but also for the realization of new-generation magnetic memory unit. Actinides (An) atoms possess extremely strong spin-orbit coupling (SOC) due to their 5 orbitals, and their ground multiplets are largely split into several sublevels because of the strong interplay between the SOC of An atoms and the crystal field (CF) formed by ligand atoms. Compared to TM-based SMMs, more dispersed energy level widths of An-based SMMs will give a larger total zero field splitting (ZFS) and thus provide a necessary condition to derive a higher .
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China.
Luminescent gold(I) compounds have attracted intensive attention due to anticipated strong spin-orbit coupling (SOC) resulting from heavy atom effect of gold atoms. However, some mononuclear gold(I) compounds are barely satisfactory. Here, we unveil that low participation of gold in transition-related orbitals, caused by 6s-π symmetry mismatch, is the cause of low SOCs in monogold(I) compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!