A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Behavior of a Metal Organic Framework Thin-Film at Elevated Temperature and Pressure as Studied with an Autoclave-Inserted Atomic Force Microscope. | LitMetric

Bridging the gap in studying surface reactions, processes, and morphology and measuring at (catalytic) relevant conditions is crucial for our understanding of the working principles of porous crystalline materials. Scanning tunneling microscopy is limited because of the required conductivity of the sample, whereas atomic force microscopy (AFM) is often challenging in use owing to the physical mechanism underlying the technique. Herein, we report a tailor-made autoclave-inserted AFM, able to measure at ∼20 bar and ∼110 °C. First, we show the ability to obtain nanometer resolution on well-defined test samples at before-mentioned conditions. Second, to demonstrate the possibilities of analyzing morphological evolutions at elevated temperatures and pressures, we use this setup to measure the stability of a surface-anchored metal-organic framework (SURMOF) in-situ at pressures of 1-20 bar in the temperature range between 20 and 60 °C. It was found that the showcase HKUST-1 material has a good physical stability, as it is hardly damaged from exposure to pressures up to 20 bar. However, its thermal stability is weaker, as exposure to elevated T damaged the material by influencing the interaction between organic linker and metal cluster. In-situ measurements at elevated T also showed an increased mobility of the material when working at such conditions. Combining the strength of AFM at elevated T and p with ex-situ AFM and spectroscopic measurements on this MOF showcases an example of how porous materials can be studied at (industrially) relevant conditions using the autoclave-inserted AFM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6518996PMC
http://dx.doi.org/10.1002/cphc.201800284DOI Listing

Publication Analysis

Top Keywords

atomic force
8
relevant conditions
8
autoclave-inserted afm
8
elevated
5
afm
5
behavior metal
4
metal organic
4
organic framework
4
framework thin-film
4
thin-film elevated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!