Many bacterial species use the MecA/ClpCP proteolytic system to block entry into genetic competence. In Streptococcus mutans, MecA/ClpCP degrades ComX (also called SigX), an alternative sigma factor for the comY operon and other late competence genes. Although the mechanism of MecA/ClpCP has been studied in multiple Streptococcus species, its role within noisy competence pathways is poorly understood. S. mutans competence can be triggered by two different peptides, CSP and XIP, but it is not known whether MecA/ClpCP acts similarly for both stimuli, how it affects competence heterogeneity, and how its regulation is overcome. We have studied the effect of MecA/ClpCP on the activation of comY in individual S. mutans cells. Our data show that MecA/ClpCP is active under both XIP and CSP stimulation, that it provides threshold control of comY, and that it adds noise in comY expression. Our data agree quantitatively with a model in which MecA/ClpCP prevents adventitious entry into competence by sequestering or intercepting low levels of ComX. Competence is permitted when ComX levels exceed a threshold, but cell-to-cell heterogeneity in MecA levels creates variability in that threshold. Therefore, MecA/ClpCP provides a stochastic switch, located downstream of the already noisy comX, that enhances phenotypic diversity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6281771PMC
http://dx.doi.org/10.1111/mmi.13992DOI Listing

Publication Analysis

Top Keywords

meca/clpcp
9
meca/clpcp proteolytic
8
proteolytic system
8
streptococcus mutans
8
competence
8
mutans competence
8
threshold
4
threshold regulation
4
regulation stochasticity
4
stochasticity meca/clpcp
4

Similar Publications

Lactococcus lactis is a lactic acid bacterium of major importance for food fermentation and biotechnological applications. The ability to manipulate its genome quickly and easily through competence for DNA transformation would accelerate its general use as a platform for a variety of applications. Natural transformation in this species requires the activation of the master regulator ComX.

View Article and Find Full Text PDF

Many bacterial species use the MecA/ClpCP proteolytic system to block entry into genetic competence. In Streptococcus mutans, MecA/ClpCP degrades ComX (also called SigX), an alternative sigma factor for the comY operon and other late competence genes. Although the mechanism of MecA/ClpCP has been studied in multiple Streptococcus species, its role within noisy competence pathways is poorly understood.

View Article and Find Full Text PDF

Competence for natural DNA transformation is a tightly controlled developmental process in streptococci. In mutans and salivarius species, the abundance of the central competence regulator σ(X) is regulated at two levels: transcriptional, by the ComRS signaling system via the σ(X)/ComX/SigX-inducing peptide (XIP), and posttranscriptional, by the adaptor protein MecA and its associated Clp ATPase, ClpC. In this study, we further investigated the mechanism and function of the MecA-ClpC control system in the salivarius species Streptococcus thermophilus.

View Article and Find Full Text PDF

Requirement of the zinc-binding domain of ClpX for Spx proteolysis in Bacillus subtilis and effects of disulfide stress on ClpXP activity.

J Bacteriol

November 2007

Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health and Science University, 20000 NW Walker Rd., Beaverton, OR 97006, USA.

Spx, a transcriptional regulator of the disulfide stress response in Bacillus subtilis, is under the proteolytic control of the ATP-dependent protease ClpXP. Previous studies suggested that ClpXP activity is down-regulated in response to disulfide stress, resulting in elevated concentrations of Spx. The effect of disulfide stress on ClpXP activity was examined using the thiol-specific oxidant diamide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!