Members of the Omp85 protein superfamily have important roles in Gram-negative bacteria, with the archetypal protein BamA being ubiquitous given its essential function in the assembly of outer membrane proteins. In some bacterial lineages, additional members of the family exist and, in most of these cases, the function of the protein is unknown. We detected one of these Omp85 proteins in the pathogen Klebsiella pneumoniae B5055, and refer to the protein as BamK. Here, we show that bamK is a conserved element in the core genome of Klebsiella, and its expression rescues a loss-of-function ∆bamA mutant. We developed an E. coli model system to measure and compare the specific activity of BamA and BamK in the assembly reaction for the critical substrate LptD, and find that BamK is as efficient as BamA in assembling the native LptDE complex. Comparative structural analysis revealed that the major distinction between BamK and BamA is in the external facing surface of the protein, and we discuss how such changes may contribute to a mechanism for resistance against infection by bacteriophage.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mmi.13990DOI Listing

Publication Analysis

Top Keywords

omp85 protein
8
protein bamk
8
klebsiella pneumoniae
8
outer membrane
8
protein
6
bamk
6
investigation omp85
4
bamk hypervirulent
4
hypervirulent klebsiella
4
pneumoniae role
4

Similar Publications

BamA, an Omp85 superfamily member, is universally conserved and essential for cell viability. Using anti-Oma87 antibodies, we focus on understanding the effect of Oma87 of Acinetobacter baumannii on pathogenicity. Oma87 was expressed, purified, and used to induce anti-Oma87 antibodies in BALB/c mice.

View Article and Find Full Text PDF

The Omp85 family of outer membrane proteins are ubiquitously distributed among diderm bacteria and play essential roles in outer membrane (OM) biogenesis. The majority of Omp85 orthologs are bipartite and consist of a conserved OM-embedded 16-stranded beta-barrel and variable periplasmic functional domains. Here, we demonstrate that Leptospira interrogans encodes four distinct Omp85 proteins.

View Article and Find Full Text PDF

The patatin-like protein PlpD forms structurally dynamic homodimers in the Pseudomonas aeruginosa outer membrane.

Nat Commun

May 2024

Genetics and Biochemistry Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.

Members of the Omp85 superfamily of outer membrane proteins (OMPs) found in Gram-negative bacteria, mitochondria and chloroplasts are characterized by a distinctive 16-stranded β-barrel transmembrane domain and at least one periplasmic POTRA domain. All previously studied Omp85 proteins promote critical OMP assembly and/or protein translocation reactions. Pseudomonas aeruginosa PlpD is the prototype of an Omp85 protein family that contains an N-terminal patatin-like (PL) domain that is thought to be translocated across the OM by a C-terminal β-barrel domain.

View Article and Find Full Text PDF

Beta-barrel outer membrane proteins (OMP) are integral components of Gram-negative bacteria, eukaryotic mitochondria, and chloroplasts. They play essential roles in various cellular processes including nutrient transport, membrane stability, host-pathogen interactions, antibiotic resistance and more. The advent of AlphaFold2 for accurate protein structure predictions transformed structural bioinformatic studies.

View Article and Find Full Text PDF

The patatin-like protein PlpD forms novel structurally dynamic homodimers in the outer membrane.

bioRxiv

April 2023

Genetics and Biochemistry Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA.

Members of the Omp85 superfamily of outer membrane proteins (OMPs) found in Gram-negative bacteria, mitochondria and chloroplasts are characterized by a distinctive 16-stranded β-barrel transmembrane domain and at least one periplasmic POTRA domain. All previously studied Omp85 proteins promote critical OMP assembly and/or protein translocation reactions. PlpD is the prototype of an Omp85 protein family that contains an N-terminal patatin-like (PL) domain that is thought to be translocated across the OM by a C-terminal β-barrel domain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!