Water shortage risk assessment considering large-scale regional transfers: a copula-based uncertainty case study in Lunan, China.

Environ Sci Pollut Res Int

State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300350, China.

Published: August 2018

The risk of water shortage caused by uncertainties, such as frequent drought, varied precipitation, multiple water resources, and different water demands, brings new challenges to the water transfer projects. Uncertainties exist for transferring water and local surface water; therefore, the relationship between them should be thoroughly studied to prevent water shortage. For more effective water management, an uncertainty-based water shortage risk assessment model (UWSRAM) is developed to study the combined effect of multiple water resources and analyze the shortage degree under uncertainty. The UWSRAM combines copula-based Monte Carlo stochastic simulation and the chance-constrained programming-stochastic multiobjective optimization model, using the Lunan water-receiving area in China as an example. Statistical copula functions are employed to estimate the joint probability of available transferring water and local surface water and sampling from the multivariate probability distribution, which are used as inputs for the optimization model. The approach reveals the distribution of water shortage and is able to emphasize the importance of improving and updating transferring water and local surface water management, and examine their combined influence on water shortage risk assessment. The possible available water and shortages can be calculated applying the UWSRAM, also with the corresponding allocation measures under different water availability levels and violating probabilities. The UWSRAM is valuable for mastering the overall multi-water resource and water shortage degree, adapting to the uncertainty surrounding water resources, establishing effective water resource planning policies for managers and achieving sustainable development.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-018-2408-1DOI Listing

Publication Analysis

Top Keywords

water shortage
28
water
22
shortage risk
12
risk assessment
12
water resources
12
transferring water
12
water local
12
local surface
12
surface water
12
multiple water
8

Similar Publications

Background: Globally, infectious diseases such as pneumonia, diarrhea, and malaria are the leading causes of death for children under 5. Diarrheal disease is a significant public health concern and causes the death of approximately 525,000 children under the age of 5 every year. In Ethiopia, studies revealed that the prevalence of diarrhea among children under 5 years is alarming.

View Article and Find Full Text PDF

Construction and Properties of Wood-Based Tannin-Iron-Complexed Photothermal Material .@Fe-GA for Solar Seawater Desalination System.

Materials (Basel)

January 2025

Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong 037009, China.

Desalinating seawater is a crucial method for addressing the shortage of freshwater resources. High-efficiency, low-cost, and environmentally friendly desalination technologies are key issues that urgently need to be addressed. This work used as a matrix material and prepared @Fe-GA through a complexation reaction to enhance the water evaporation rate and photothermal conversion efficiency of seawater desalination.

View Article and Find Full Text PDF

Disaster emergency meal plans for Korean patients who require hemodialysis.

Kidney Res Clin Pract

January 2025

Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Republic of Korea.

Proactive planning and preparation are critical to the safety of patients on dialysis during emergencies, such as natural disasters, and pandemics, such as coronavirus disease 2019. Patients with end-stage kidney disease are particularly vulnerable to disruptions such as power outages, water shortages, transportation issues, and dialysis center closures because they can result in missed dialysis sessions and severe health deterioration. This study aimed to develop tailored dietary guidelines for Korean patients on hemodialysis by applying the U.

View Article and Find Full Text PDF

A Fish-Gill-Inspired Biomimetic Multiscale-Ordered Hydrogel-Based Solar Water Evaporator for Highly Efficient Salt-Rejecting Seawater Desalination.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.

Solar energy-driven steam generation is a renewable, energy-efficient technology that can alleviate the global clean water shortage through seawater desalination. However, the contradiction between resistance to salinity accretion and maintaining high water evaporation properties remains a challenging bottleneck. Herein, we have developed a biomimetic multiscale-ordered hydrogel-based solar water evaporator for efficient seawater desalination.

View Article and Find Full Text PDF

Water quality assessment of rooftop harvested rainwater across different roof types in a semi-arid region of South Africa.

Water Environ Res

January 2025

Water and Environmental Management Research Group, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa.

Uneven distribution of precipitation and climate change have led to water shortages, adversely impacting numerous countries worldwide. Rooftop rainwater harvesting (RWH) has emerged as a crucial method for providing water for domestic uses. However, there are concerns about the quality of rainwater collected from roofs, as it may be contaminated with pollutants such as metals and microbiological pathogens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!