Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ferromagnetic Cr2Te3 nanorods were synthesized by a one-pot high-temperature organic-solution-phase method. The crystalline phases and magnetic properties can be systematically tuned by varying the molar ratio of the Cr and Te precursors. A magnetically hard phase, identified as chemically ordered Cr2Te3, is the dominating one at the precursor ratio between Cr : Te = 1 : 1.2 and 1 : 1.8. A magnetically soft phase, attributed to chemical disorder due to composition inhomogeneity and stacking faults, is present under either Cr-rich or Te-rich synthesis conditions. A large coercivity of 9.6 kOe is obtained for a Cr : Te precursor ratio of 1 : 1.8, which is attributed to the large magnetocrystalline anisotropy of ordered Cr2Te3 nanorods, and verified by density-functional theory calculations. The hard and soft phases sharing coherent interfaces co-exist in a seemingly single-crystalline nanorod, showing an unusual transition from exchange-coupled behavior at higher temperatures to two-phase behavior as the temperature is lowered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8nr02272k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!