Our study aims to assess the implication of WRKY transcription factor in the molecular mechanisms of grapevine adaptation to salt and water stresses. In this respect, a full-length cDNA, isolated from a grape berry cDNA library, was constitutively over-expressed in seedlings. Our results showed that transgenic tobacco plants exhibited higher seed germination rates and better growth, under both salt and osmotic stress treatments, when compared to wild type plants. Furthermore, our analyses demonstrated that, under stress conditions, transgenic plants accumulated more osmolytes, such as soluble sugars and free proline, while no changes were observed regarding electrolyte leakage, HO, and malondialdehyde contents. The improvement of osmotic adjustment may be an important mechanism underlying the role of 2 in promoting tolerance and adaptation to abiotic stresses. Principal component analysis of our results highlighted a clear partition of plant response to stress. On the other hand, we observed a significant adaptation behaviour response for transgenic lines under stress. Taken together, all our findings suggest that over-expression of gene has a compelling role in abiotic stress tolerance and, therefore, would provide a useful strategy to promote abiotic stress tolerance in grape molecular-assisted breeding and/or new biotechnology tools.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5972082 | PMC |
http://dx.doi.org/10.1007/s13205-018-1301-4 | DOI Listing |
Adv Sci (Weinh)
January 2025
Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
Rice is highly sensitive to cold stress, particularly at the booting stage, which significantly threatens rice production. In this study, we cloned a gene, CTB6, encoding a lipid transfer protein involved in cold tolerance at the booting stage in rice, based on our previous fine-mapped quantitative trait locus (QTL) qCTB10-2. CTB6 is mainly expressed in the tapetum and young microspores of the anther.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
With climate change, the frequency of regions experiencing water scarcity is increasing annually, posing a significant challenge to crop yield. Barley, a staple crop consumed and cultivated globally, is particularly susceptible to the detrimental effects of drought stress, leading to reduced yield production. Water scarcity adversely affects multiple aspects of barley growth, including seed germination, biomass production, shoot and root characteristics, water and osmotic status, photosynthesis, and induces oxidative stress, resulting in considerable losses in grain yield and its components.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang, Republic of Korea.
Cold stress during the seedling stage significantly threatens rice ( L.) production, specifically in temperate climates. This study aimed to identify quantitative trait loci (QTLs) associated with cold tolerance at the seedling stage.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Heat Stroke Treatment and Research Center of Chinese PLA General Hospital, Sanya, China.
Exertional heat stroke (EHS) is a life-threatening condition characterized by hyperthermia and multi-organ dysfunction, often associated with intestinal barrier disruption. This study evaluated the protective effects of Huoxiang Zhengqi Dropping Pills (HXZQD) against EHS in a rat model. HXZQD was administered via oral gavage at low, medium, and high doses, followed by EHS induction through exercise under high-temperature and high-humidity conditions.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy.
Introduction: Endoplasmic reticulum aminopeptidases 1 (ERAP1) and 2 (ERAP2) modulate a plethora of physiological processes for the maintenance of homeostasis in different cellular subsets at both intra and extracellular level.
Materials And Methods: In this frame, the extracellular supplementation of recombinant human (rh) ERAP1 and ERAP2 (300 ng/ml) was used to mimic the effect of stressor-induced secretion of ERAPs on neutrophils isolated from 5 healthy subjects. In these cells following 3 h or 24 h rhERAP stimulation by Western Blot, RT-qPCR, Elisa, Confocal microscopy, transwell migration assay, Oxygraphy and Flow Cytometry we assessed: i) rhERAP internalization; ii) activation; iii) migration; iv) oxygen consumption rate; v) reactive oxygen species (ROS) accumulation; granule release; vi) phagocytosis; and vii) autophagy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!