Optimization of 3D-Visualization of Micro-Anatomical Structures of the Human Inner Ear in Osmium Tetroxide Contrast Enhanced Micro-CT Scans.

Front Neuroanat

Division of Balance Disorders, Department of Otorhinolaryngology, Head, and Neck Surgery, Faculty of Health Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, Netherlands.

Published: May 2018

Knowledge of the neuro-anatomical architecture of the inner ear contributes to the improvement and development of cochlear and vestibular implants. The present knowledge is mainly based on two-dimensional images (histology) or derived models that simplify the complexity of this architecture. This study investigated the feasibility of visualizing relevant neuro-anatomical structures of the inner ear in a dynamic three-dimensional reproduction, using a combination of staining, micro-CT imaging and an image processing algorithm. Four fresh cadaveric temporal bones were postfixed with osmium tetroxide (OsO) and decalcified with EDTA. Micro-CT was used for scanning at 10 μm (4 scans) and 5.5 μm (1 scan) voxel resolution. A new image processing algorithm was developed and the scans were visualized in open source software. OsO enhanced the contrast in all scans and the visualization was substantially improved by the image processing algorithm. The three-dimensional renderings provided detailed visualization of the whole inner ear. Details were visible up to the size of individual neurons, nerve crossings and the specific neuro-anatomical structures such as the tunnel of Corti. The combination of OsO, micro-CT and the proposed image processing algorithm provides an accurate and detailed visualization of the three-dimensional micro-anatomy of the human inner ear.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5972190PMC
http://dx.doi.org/10.3389/fnana.2018.00041DOI Listing

Publication Analysis

Top Keywords

inner ear
20
image processing
16
processing algorithm
16
human inner
8
osmium tetroxide
8
neuro-anatomical structures
8
detailed visualization
8
inner
5
ear
5
optimization 3d-visualization
4

Similar Publications

DFNA1 (deafness, nonsyndromic autosomal dominant 1), initially identified as nonsyndromic sensorineural hearing loss, has been associated with an additional symptom: macrothrombocytopenia. However, the timing of the onset of hearing loss (HL) and thrombocytopenia has not been investigated, leaving it unclear which occurs earlier. Here, we generated a knock-in (KI) DFNA1 mouse model, diaphanous-related formin 1 (DIA1), in which Aequorea coerulescens green fluorescent protein (AcGFP)-tagged human DIA1(p.

View Article and Find Full Text PDF

Introduction: The brainstem vestibular nuclei neurons receive synaptic inputs from inner ear acceleration-sensing hair cells, cerebellar output neurons, and ascending signals from spinal proprioceptive-related neurons. The lateral (LVST) and medial (MVST) vestibulospinal (VS) tracts convey their coded signals to the spinal circuits to rapidly counter externally imposed perturbations to facilitate stability and provide a framework for self-generated head movements.

Methods: The present study describes the morphological characteristics of intraaxonally recorded and labeled VS neurons monosynaptically connected to the 8th nerve.

View Article and Find Full Text PDF

Sound detection in fishes relies on the inner ear and peripheral structures, such as calcareous otoliths, which play a crucial role in perceiving movement, orientation, and balance. Otoliths, in particular, respond to various environmental factors including temperature, salinity, and food availability, making them valuable indicators of ecological conditions. This study applies geometric morphometrics (GMM) to analyze the otolith shape of Diplodus annularis (Linnaeus, 1758) from two distinct populations located in the Gulf of Asinara (Porto Torres, Sardinia) and the northern Adriatic Sea (Le Tegnue).

View Article and Find Full Text PDF

Hair cell (HC) loss, frequently induced by ototoxic agents such as gentamicin, leads to irreversible hearing loss. Because of the restricted regenerative capabilities of the mammalian inner ear, the exploration of therapeutic strategies to restore damaged HCs is critically needed. Recombinant human Neuritin (rhNeuritin), a neurotrophic factor with established roles in promoting cell survival and regeneration across various systems, presents itself as a promising therapeutic candidate for HC repair.

View Article and Find Full Text PDF

Integrating vestibular and visual cues for verticality perception.

Exp Brain Res

January 2025

School of Psychological Sciences, Birkbeck University of London, Malet St, London, WC1E 7HX, UK.

Verticality is the perception of what's upright relative to gravity. The vestibular system provides information about the head's orientation relative to gravity, while visual cues influence the perception of external objects' alignment with the vertical. According to Bayesian integration, the perception of verticality depends on the relative reliability of visual and vestibular cues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!