Successful osseointegration of an endosseous implant involves migration and differentiation of mesenchymal stem cells (MSCs) on the implant surface. Micro-structured, hydrophilic titanium surfaces direct MSCs to undergo osteoblastic differentiation in vitro, in the absence of media additives commonly used in cultures grown on tissue culture polystyrene (TCPS). This process involves non-canonical Wnt5a, in contrast to canonical Wnt3a typically credited with osteoblastic differentiation on TCPS. Wnt proteins have been implicated in morphological development and tissue patterning, suggesting that additional Wnts may participate. Here, we demonstrate that Wnt11 is a mediator of osteoblast commitment of MSCs, and increases in a surface-roughness dependent manner. Experiments using cells silenced for Wnt11 indicate that cross-talk between Wnt5a and Wnt11 occurs. Wnt11 potentially acts upstream to Wnt5a, increasing Wnt5a expression and factors associated with osteogenesis. Thus, Wnt11 contributes to peri-implant bone formation distal to the implant surface through a heavily regulated signaling cascade of autocrine/paracrine proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5988747 | PMC |
http://dx.doi.org/10.1038/s41598-018-26901-8 | DOI Listing |
Cell Commun Signal
January 2025
Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China.
The prevalence of obesity and osteoporosis (OP) represents a significant public health concern on a global scale. A substantial body of evidence indicates that there is a complex relationship between obesity and OP, with a correlation between the occurrence of OP and obesity. In recent years, sirtuins have emerged as a prominent area of interest in the fields of aging and endocrine metabolism.
View Article and Find Full Text PDFPerfluorooctane sulfonate (PFOS) is a widely used chemical in industrial production. It can be introduced into the environment through multiple pathways and exhibits resistance to degradation. Recent research has demonstrated a significant correlation between its exposure levels in the human body and the incidence of various diseases.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
January 2025
Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India; Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India. Electronic address:
Chemoresistance, a significant challenge in effective cancer treatment needs clear elucidation of the underlying molecular mechanism for the development of novel therapeutic strategies. Alterations in transporter pumps, oncogenes, tumour suppressor genes, mitochondrial function, DNA repair processes, autophagy, epithelial-mesenchymal transition (EMT), cancer stemness, epigenetic modifications, and exosome secretion lead to chemoresistance. Despite notable advancements in targeted cancer therapies employing both small molecules and macromolecules success rates remain suboptimal due to adverse effects like drug efflux, target mutation, increased mortality of normal cells, defective apoptosis, etc.
View Article and Find Full Text PDFCell Signal
January 2025
The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China. Electronic address:
Most osteosarcoma (OS) cases exhibit poor differentiation at the histopathological level. Disruption of the normal osteogenic differentiation process results in the unregulated proliferation of precursor cells, which is a critical factor in the development of OS. Differentiation therapy aims to slow disease progression by restoring the osteogenic differentiation process of OS cells and is considered a new approach to treating OS.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, China.
Cartilage repair remains a formidable challenge because of its limited regenerative capacity. Construction of a biomimetic hydrogel matrix that can induce cell aggregation is a promising therapeutic option. Cell aggregates are more beneficial than dissociated cells for improving survival and chondrogenic differentiation, thereby facilitating cartilage repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!