Sirtuins are a family of deacetylases (Class III histone deacetylases) with evolutionarily conserved functions in cellular metabolism and chromatin regulation. Out of the seven human Sirtuins, the function of Sirt2 is the least understood. The purpose of the present study was to investigate the role of Sir2A, a homolog of human Sirt2 in Dictyostelium discoideum (Dd), a lower eukaryote. We created both overexpressing and deletion strains of Ddsir2A to analyse its functions. We observed sir2A mRNA expression throughout development and the transcript was present in the prespore/spore region of multicellular structures developed. They show a preference towards prestalk/stalk pathway when co-developed with wildtype cells during chimera formation. Deletion strain showed a multi-tipped phenotype, decrease in cell proliferation and inhibition of autophagy. In conclusion, our results show low cAMP levels, reduced cell-adhesion, weak cell migration and impaired autophagy to be responsible for the phenotype shown by the null cells. This study provides new insights into the functions of Ddsir2A.
Download full-text PDF |
Source |
---|
Exp Cell Res
January 2025
School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India. Electronic address:
Translationally controlled tumor protein (TCTP) is a well conserved and ubiquitously expressed multifunctional protein found in many organisms and is involved in many pathophysiological processes like cell proliferation, differentiation, development and cell death. The role of TCTP in anti-apoptosis and cancer metastasis makes it a promising candidate for cancer therapy. Dictyostelium discoideum, a protist, has two isoforms (TCTP1 and TCTP2, now referred to as TPT1 and TPT2) of which we have earlier elucidated TPT1.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Single Molecule Biology, Graduate School of Science and Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Excitable systems of eukaryotic chemotaxis can generate asymmetric signals of Ras-GTP-enriched domains spontaneously to drive random cell migration without guidance cues. However, the molecules responsible for the spontaneous signal generation remain elusive. Here, we characterized RasGEFs encoded in Dictyostelium discoideum by live-cell imaging of the spatiotemporal dynamics of Ras-GTP and hierarchical clustering, finding that RasGEFX is primarily required for the spontaneous generation of Ras-GTP-enriched domains and is essential for random migration in combination with RasGEFB/M/U in starved cells, and they are dispensable for chemotaxis to chemoattractant cAMP.
View Article and Find Full Text PDFMol Cell
December 2024
Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany. Electronic address:
Changing environmental conditions necessitate rapid adaptation of cytoplasmic and nuclear volumes. We use the slime mold Dictyostelium discoideum, known for its ability to tolerate extreme changes in osmolarity, to assess which role nuclear pore complexes (NPCs) play in achieving nuclear volume adaptation and relieving mechanical stress. We capitalize on the unique properties of D.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
Dictyostelids represent a crucial element in the protist community, and their abundant presence in Jilin Province underscores their indispensable role in biodiversity conservation. In the present study, a resource survey of dictyostelids used random sampling to collect 28 soil samples from five localities in Changbai Korean Autonomous County, Jilin Province. In addition, a compilation of dictyostelid species reported from Jilin Province was developed, based on a thorough review of the literature.
View Article and Find Full Text PDFDev Cell
December 2024
Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK. Electronic address:
Oscillatory phenomena play widespread roles in the control of biological systems. In D. discoideum, oscillatory cyclic adenosine monophosphate (cAMP) signaling drives collective behavior and induces a temporal developmental gene expression program.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!