Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study describes the functional characterization of two proteins, AupA and AupB, which are required for growth on alkanes in the marine hydrocarbonoclastic bacterium The and genes form an operon whose expression was increased upon adhesion to and biofilm formation on hexadecane. AupA and AupB are outer and inner membrane proteins, respectively, which are able to interact physically. Mutations in or/and reduced growth on solid paraffin and liquid hexadecane, while growth on nonalkane substrates was not affected. In contrast, growth of mutants on hexadecane solubilized in Brij 58 micelles was completely abolished. Mutant cells had also lost the ability to bind to -hexadecane solubilized in Brij 58 micelles. These results support the involvement of AupA and AupB in the uptake of micelle-solubilized alkanes and provide the first evidence for a cellular process involved in the micellar uptake pathway. The phylogenetic distribution of the operon revealed that it is widespread in marine hydrocarbonoclastic bacteria of the orders and and that it is present in high copy number (up to six) in some strains. These features suggest that Aup proteins probably confer a selective advantage in alkane-contaminated seawater. Bacteria are the main actors of the biological removal of hydrocarbons in seawater, and so, it is important to understand how they degrade hydrocarbons and thereby mitigate marine environmental damage. Despite a considerable amount of literature about the dynamic of microbial communities subjected to hydrocarbon exposure and the isolation of strains that degrade hydrocarbons, most of the genetic determinants and molecular mechanisms of bacterial hydrocarbon uptake remain unknown. This study identifies two genes, and , in the hydrocarbonoclastic bacterium that are present frequently in multiple copies in most of the marine hydrocarbon-degrading bacteria for which the genomic sequence is available. AupA and AupB are two novel membrane proteins interacting together that are involved in the uptake of alkanes dissolved in surfactant micelles. The function and the phylogenetic distribution of and suggest that they might be one attribute of the remarkable adaptation of marine hydrocarbonoclastic bacteria that allow them to take advantage of hydrocarbons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5989066 | PMC |
http://dx.doi.org/10.1128/mBio.00520-18 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!