In bone tissue engineering, bioceramics are of the most widely used materials for treatment of bone defects clinically. The composites of bioceramic/polymer fibrous scaffolds have been designed and developed to fulfill the mechanical and biological requirements of the damaged tissue. In the present study, oyster shell (OS) as a bioceramic in combination with the biodegradable and biocompatible poly (l-lactide) has been used to prepare a new tissue-engineered composite. The morphology, porosity, water contact angle and mechanical properties of scaffolds were investigated. Mesenchymal stem cells were also cultured on fabricated scaffolds to evaluate their potential to support cell proliferation and osteogenic differentiation. The SEM results indicated that the electrospun scaffolds were nanostructured and the OS were oriented along the fiber axis. The tensile strength and also the increased surface hydrophilicity of scaffolds after plasma treatment were suitable for tissue engineering applications. MTT assay demonstrated that the fabricated scaffolds were capable of supporting stem cell attachment and proliferation. Biomineralization measurements demonstrated the enhanced osteogenic differentiation of stem cells on composite PLLA/OS scaffolds. Taken together, these scaffolds were shown to hold promising potential for the treatment of bone defects in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biologicals.2018.04.006DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
12
stem cells
12
proliferation osteogenic
8
differentiation stem
8
tissue engineering
8
treatment bone
8
bone defects
8
scaffolds
8
fabricated scaffolds
8
electrospun composite
4

Similar Publications

PIK3R3 regulates differentiation and senescence of periodontal ligament stem cells and mitigates age-related alveolar bone loss by modulating FOXO1 expression.

J Adv Res

January 2025

Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Beijing 100081, China. Electronic address:

Introduction: Periodontal diseases are prevalent among middle-aged and elderly individuals. There's still no satisfactory solution for tooth loss caused by periodontal diseases. Human periodontal ligament stem cells (hPDLSCs) is a distinctive subgroup of mesenchymal stem cells, which play a crucial role in periodontal supportive tissues, but their application value hasn't been fully explored yet.

View Article and Find Full Text PDF

In situ bone regeneration and vertical bone augmentation have been huge problems in clinical practice, always imposing a significant economic burden and causing patient suffering. Herein, MgZnYNd magnesium alloy rod implantation in mouse femur resulted in substantial subperiosteal new bone formation, with osteoimmunomodulation playing a pivotal role. Abundant macrophages were attracted to the subperiosteal new bone region and proved to be the most important regulation cells for bone regeneration.

View Article and Find Full Text PDF

Phytochemicals, which are bioactive compounds contained in fruits, vegetables, and teas, have a positive effect on human health by having anti-inflammatory, antioxidant, and anticarcinogenic effects. Several studies have highlighted the ability of bioactive compounds to activate key cellular enzymes associated with important signaling pathways related to cell division and proliferation, as well as their role in inflammatory and immunological responses. Some phytochemicals are associated with increased proliferation, differentiation, and expression of markers related to osteogenesis, bone formation, and mineralization by activating various signaling pathways.

View Article and Find Full Text PDF

The leaves of have been used in treating freckles and effectively reducing cough and sputum in folk medicines. Recently, investigations into the correlation between ginkgo leaves and the proliferative activity of osteogenic differentiation have been conducted. However, bioactive compounds that enhance osteogenesis or exhibit osteoporosis prevention from have not been fully identified.

View Article and Find Full Text PDF

Background: Osteoporosis is characterized by the microstructural depletion of bone tissue and decreased bone density, leading to an increased risk of fractures. Nakai, an endemic species of the Korean Peninsula, grows wild in Ulleungdo. In this study, we aimed to investigate the effects of and its components on osteoporosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!