Cancer cell metabolism is quite different from normal cells. Targeting cancer metabolism and untuning the tumor metabolic machine has emerged as a promising strategy for cancer therapy. We have developed a multi-functional Re-dca conjugate (Re-dca 2) by conjugating the metabolic modulator dichloroacetate (DCA) to mitochondria-targeted rhenium(I) complex, allowing its efficient penetration into cancer cells and selective accumulation in mitochondria, thus achieving the cancer cell metabolism reversal from glycolysis to glucose oxidation at pharmacologically relevant DCA doses. Mechanism studies confirm the inhibition effect of Re-dca 2 on the activity of pyruvate dehydrogenase kinase (PDK) and capture the metabolic reversal window in Re-dca 2 treated NCI-1229 cells at the early stage of drug treatment, resulting in selective killing of malignant cells cocultured with normal cells, significant inhibition of cancer cell metastasis and invasion, as well as excellent anti-angiogenesis activities in zebrafish embryos. By comparison, DCA-free Re(I) analogue is also investigated under the same conditions. Although this analogue also exhibits cytotoxicity due to the Re(I) core, metabolic reversal is not induced by this analogue and its anti-metastasis activity is much lower than Re-dca 2, indicating the synergistic effect of Re(I) core and DCA moiety on cancer therapy. In vivo anti-cancer investigations also indicate that the mitochondria-targeted Re-dca 2 can effectively inhibit the tumor growth without affecting the body weight of nude mice, and the therapeutic effect is much better than the DCA-free Re(I) analogue 2a. Simultaneously, the O-sensitive phosphorescent lifetimes of Re-dca 2 can be utilized for PLIM imaging of intracellular oxygen consumption, thus reflecting the Re-dca 2 induced glycolysis-to-glucose oxidation reversal at the early drug treatment stage. The excellent phosphorescence of Re-dca 2 can also be utilized for real-time tracking of mitochondrial morphological changes during treatment. In a word, rational design of phosphorescent metallodrug and metabolic modulator conjugates for synergistic treatment is a promising strategy for simultaneous untuning and tracking tumor metabolic machine, thus providing new clues for cancer therapy and mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2018.05.040 | DOI Listing |
J Transl Med
January 2025
Medical College of YiChun University, Xuefu Road No 576, Yichun, 336000, Jiangxi, People's Republic of China.
Background: Artificial sweeteners (AS) have been widely utilized in the food, beverage, and pharmaceutical industries for decades. While numerous publications have suggested a potential link between AS and diseases, particularly cancer, controversy still surrounds this issue. This study aims to investigate the association between AS consumption and cancer risk.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, 275 E Hancock St, Rm 195, Detroit, MI, 48201, USA.
Current fetal alcohol spectrum disorders (FASD) studies primarily focus on alcohol's actions on the fetal brain although respiratory infections are a leading cause of morbidity/mortality in newborns. The limited studies examining the pulmonary adaptations in FASD demonstrate decreased surfactant protein A and alveolar macrophage phagocytosis, impaired differentiation, and increased risk of Group B streptococcal pneumonia with no study examining sexual dimorphism in adaptations. We hypothesized that developmental alcohol exposure in pregnancy will lead to sexually dimorphic fetal lung morphological and immune adaptations.
View Article and Find Full Text PDFJ Med Case Rep
January 2025
Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya University Hospital, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan.
Background: The Compress is designed to achieve bone formation and stability by applying pressure at the bone-implant interface, minimizing the likelihood of aseptic loosening, which is a complication of stem implants. Herein, we report two cases of implant failure using the Compress.
Case Presentation: Case 1 describes a 36 year-old Japanese man who underwent extraarticular tumor resection, Compress arthroplasty, and reconstruction with a gastrocnemius flap after preoperative chemotherapy for a secondary malignant giant cell tumor in the right distal femur.
Cancer Cell Int
January 2025
Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, 9 West Section Lvshun South Road, Dalian, 116044, China.
Clear cell renal cell carcinoma (ccRCC) is a globally severe cancer with an unfavorable prognosis. PANoptosis, a form of cell death regulated by PANoptosomes, plays a role in numerous cancer types. However, the specific roles of genes associated with PANoptosis in the development and advancement of ccRCC remain unclear.
View Article and Find Full Text PDFEur J Med Res
January 2025
Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.
Objective: This study aimed to evaluate CTF1 expression in glioma, its relationship to patient prognosis and the tumor immune microenvironment, and effects on glioma phenotypes to identify a new therapeutic target for treating glioma precisely.
Methods: We initially assessed the expression of CTF1, a member of the IL-6 family, in glioma, using bioinformatics tools and publicly available databases. Furthermore, we examined the correlation between CTF1 expression and tumor prognosis, DNA methylation patterns, m6A-related genes, potential biological functions, the immune microenvironment, and genes associated with immune checkpoints.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!