Carbon nanoparticles are widely studied for affecting crop production in agriculture. Considering their potential threats to the crops, especially under drought stress, is important for carbon nanoparticle application. However, the influence of polyhydroxy fullerene-fullerol on drought tolerance at the physiological and molecular levels in Brassica napus remains unclear. In the present study, different doses of fullerol were applied to seeds or leaves of B. napus subjected to water stress. The results showed that water stress significantly reduced the seed germination, aboveground dry weight, and photosynthesis, whereas it increased the abscisic acid (ABA) concentration, reactive oxygen species (ROS) accumulation, levels of non-enzymatic substances, and activities of antioxidant enzymes in B. napus. Priming with fullerol at 10 and 100 mg L in seeds exhibited a significant promotional effect on seed germination under 15% polyethylene glycol treatment. Moreover, foliar application of fullerol raised the aboveground dry weight and photosynthesis in B. napus seedlings under soil drying. Compared with soil drying alone, the accumulation of ROS was repressed, which was concomitant with higher concentrations of non-antioxidant substances and increased activities of antioxidant enzymes in leaves of seedlings exposed to fullerol at specific concentrations addition with water shortage. Fullerol treatments at 1-100 mg L dramatically increased the leaf ABA level and induced ABA biosynthesis by down-regulating the expression of the ABA catabolic gene CYP707A3 under drought. It is concluded that exogenous fullerol with seed priming or foliar application can stimulate growth in B. napus when water-stressed. The increased antioxidant ability that collectively detoxified ROS improved the drought tolerance in B. napus seedlings under foliar-applied fullerol treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2018.05.026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!